首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synaptojanin 1, a polyphosphoinositide phosphatase, is expressed as two major alternatively spliced isoforms of 145 kDa (SJ145) and 170 kDa (SJ170) [1] [2], which are thought to have pleiotropic roles in endocytosis, signaling and actin function [3] [4] [5]. SJ145 is highly enriched in nerve terminals where it participates in clathrin-dependent synaptic vesicle recycling [1] [5]. SJ170, which differs from SJ145 by the presence of a carboxy-terminal extension, is the predominant isoform in developing neurons and is expressed in a variety of tissues [2]. The carboxy-terminal domain unique to SJ170 was previously shown to bind Eps15 [6], a protein involved in receptor-mediated endocytosis. Here, we show that the same domain also binds clathrin and the clathrin adaptor AP-2. These interactions occur both in vitro and in vivo and are direct. Binding of AP-2 is mediated by the ear domain of its alpha-adaptin subunit and binding of clathrin by the amino-terminal domain of its heavy chain. Overexpression in chinese hamster ovary (CHO) cells of full-length SJ170 or its unique carboxy-terminal region caused mislocalization of Eps15, AP-2 and clathrin, as well as inhibition of clathrin-dependent transferrin uptake. These findings suggest a close association of SJ170 with the clathrin coat and provide new evidence for its physiological role in the regulation of clathrin coat dynamics.  相似文献   

2.
The protozoan parasite Giardia lamblia acquires cholesterol from the environment since it is unable to synthesise cholesterol de novo and this is vital for trophozoite growth. Conversely, the lack of cholesterol was described as an essential event to trigger encystation, the differentiation of trophozoites to mature cysts. During the G. lamblia cell cycle, cholesterol is acquired as a free molecule as well as through receptor-mediated endocytosis (RME) of lipoproteins. In this work, we describe the involvement of RME in the cell differentiation process of G. lamblia. We found that a reduction in the expression of the medium subunit (Glµ2) of the giardial adaptin protein GlAP2 impaired RME, triggering the process of encystation in growing cells. Contrary to expectations, decreasing Glµ2 expression produced a cohort of trophozoites that yielded significantly less mature cysts when cells were induced to encyst. Analysis of the subcellular localization of Glµ2 and the cyst wall protein 1 (CWP1) during encystation was later performed, to dissect the process. Our results showed, on one hand, that blocking RME by inhibiting Glµ2 expression, and probably cholesterol entry, is sufficient to induce cell differentiation but not to complete the process of encystation. On the other hand, we observed that GlAP2 is necessary to accomplish the final steps of encystation by sorting CWP1 to the plasma membrane for cyst wall formation. The understanding of the mechanisms involved in cyst formation should provide novel insights into the control of giardiasis, an endemic worldwide neglected disease.  相似文献   

3.
Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B, and mice knocked out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knockdown of AP-1A causes missorting of basolateral proteins in MDCK cells, but only after knockdown of AP-1B, suggesting that AP-1B can compensate for lack of AP-1A. AP-1A localizes predominantly to the TGN, and its knockdown promotes spillover of basolateral proteins into common recycling endosomes, the site of function of AP-1B, suggesting complementary roles of both adaptors in basolateral sorting. Yeast two-hybrid assays detect interactions between the basolateral signal of transferrin receptor and the medium subunits of both AP-1A and AP-1B. The basolateral sorting function of AP-1A reported here establishes AP-1 as a major regulator of epithelial polarity.  相似文献   

4.
Clathrin adaptor protein AP-1 complex is thought to function in forming clathrin-coated vesicles at the trans -Golgi network (TGN) and mediating transport of cargo between the TGN and endosomes. To study trafficking of AP-1 in living cells, yellow fluorescent protein (YFP) was inserted in the middle of µ1 A subunit of AP-1. When expressed in a tetracycline-dependent manner in HeLa cells, YFP-µ1 was efficiently incorporated into the AP-1 complex, replacing endogenous µ1 in most of cellular AP-1. Time-lapse imaging revealed that YFP-µ1/AP-1 departs from TGN as isolated vesicles and spherical structures, or varicosities, associated with fine tubular processes. Typically, several vesicles or varicosities were seen moving sequentially along the same 'tracks' from TGN to cell periphery. These data suggest that AP-1 may function after formation of Golgi transport intermediates in facilitating their intracellular movement. Mutagenesis of YFP-µ1 determined that the structural requirements for its binding to tyrosine-containing sequence motifs are similar to those previously defined in µ2 subunit of AP-2. Moreover, the carboxyl-terminal half of µ2 could replace the corresponding fragment of µ1 without loss of the ability of the resulting µ1-YFP-µ2 chimeric protein to incorporate into AP-1 and bind tyrosine-containing motifs. Mutations that abolish binding capacity for tyrosine motifs did not mistarget AP-1 in the cell, suggesting that AP-1 interactions with this type of sorting signals are not essential for membrane docking of AP-1 at the TGN. Altogether, this study demonstrates that YFP-tagged µ1 protein can serve as a useful tool for visualizing the dynamics of AP-1 in living cells and for the structure-function analysis of µ1–cargo interactions.  相似文献   

5.
Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.  相似文献   

6.
In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2''s C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel''s dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex.  相似文献   

7.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

8.
Most epithelial cells contain two AP-1 clathrin adaptor complexes. AP-1A is ubiquitously expressed and involved in transport between the TGN and endosomes. AP-1B is expressed only in epithelia and mediates the polarized targeting of membrane proteins to the basolateral surface. Both AP-1 complexes are heterotetramers and differ only in their 50-kD mu1A or mu1B subunits. Here, we show that AP-1A and AP-1B, together with their respective cargoes, define physically and functionally distinct membrane domains in the perinuclear region. Expression of AP-1B (but not AP-1A) enhanced the recruitment of at least two subunits of the exocyst complex (Sec8 and Exo70) required for basolateral transport. By immunofluorescence and cell fractionation, the exocyst subunits were found to selectively associate with AP-1B-containing membranes that were both distinct from AP-1A-positive TGN elements and more closely apposed to transferrin receptor-positive recycling endosomes. Thus, despite the similarity of the two AP-1 complexes, AP-1A and AP-1B exhibit great specificity for endosomal transport versus cell polarity.  相似文献   

9.
The clathrin adaptor protein complex-1 (AP-1) is a central player in cell physiology and human health. It is best known for its role in linking clathrin to its cargo at the trans-Golgi network and endosomes. It participates in traffic important for the correct function of a large number of organelles, including the trans-Golgi network, endosomes, lysosomes, lysosome-related organelles, and plasma membrane. Although it was one of the first clathrin adaptors identified, new discoveries about cargo and pathways that depend on AP-1 continue to emerge. This review summarizes new research into AP-1 that further illuminates its roles in the traffic of plasma membrane proteins, in maintaining TGN content, and in human disease.  相似文献   

10.
Phosphatidylinositol 4 phosphate [PI(4)P] is essential for secretion in yeast, but its role in mammalian cells is unclear. Current paradigms propose that PI(4)P acts primarily as a precursor to phosphatidylinositol 4,5 bisphosphate (PIP2), an important plasma membrane regulator. We found that PI(4)P is enriched in the mammalian Golgi, and used RNA interference (RNAi) of PI4KIIalpha, a Golgi resident phosphatidylinositol 4 kinase, to determine whether PI(4)P directly regulates the Golgi. PI4KIIalpha RNAi decreases Golgi PI(4)P, blocks the recruitment of clathrin adaptor AP-1 complexes to the Golgi, and inhibits AP-1-dependent functions. This AP-1 binding defect is rescued by adding back PI(4)P. In addition, purified AP-1 binds PI(4)P, and anti-PI(4)P inhibits the in vitro recruitment of cytosolic AP-1 to normal cellular membranes. We propose that PI4KIIalpha establishes the Golgi's unique lipid-defined organelle identity by generating PI(4)P-rich domains that specify the docking of the AP-1 coat machinery.  相似文献   

11.
The negative signaling receptor cytolytic T lymphocyte-associated Ag-4 (CTLA-4) resides primarily in intracellular compartments such as the Golgi apparatus of T cells. However, little is known regarding the molecular mechanisms that influence this accumulation. In this study, we demonstrate binding of the clathrin adaptor complex AP-1 with the GVYVKM motif of the cytoplasmic domain of CTLA-4. Binding occurred primarily in the Golgi compartment of T cells, unlike with AP-2 binding that occurs mostly with cell surface CTLA-4. Although evidence was not found to implicate AP-1 binding in the retention of CTLA-4 in the Golgi, AP-1 appears to play a role in shuttling of excess receptor from the Golgi to the lysosomal compartments for degradation. In support of this, increased CTLA-4 synthesis resulted in an increase in CTLA-4/AP-1 binding and a concomitant increase in the appearance of CTLA-4 in the lysosomal compartment. At the same time, the level of intracellular receptor was maintained at a constant level, suggesting that CTLA-4/AP-1 binding represents one mechanism to ensure steady state levels of intracellular CTLA-4 in T cells. Finally, we demonstrate that the TCR zeta/CD3 complex (but not CD28) also binds to AP-1 and AP-2 complexes, thus providing a possible link between these two receptors in the regulation of T cell function.  相似文献   

12.
ADP-ribosylation factor 1 (ARF1) mediates clathrin coat formation on PC12 immature secretory granules (ISGs). We have used two approaches to investigate whether ARF1 interacts directly with the clathrin adaptor protein, AP-1. Using an in vitro recruitment assay and co-immunoprecipitation, we could isolate an AP-1.ARF1 complex. Then we used a site-directed photocross-linking approach to determine the components that act downstream of ARF1 in clathrin coat formation on ISGs. Myristoylated ARF1, with a photolabile phenylalanine analogue incorporated into its putative effector domain (switch 1), showed a specific, GTP-dependent interaction with both the gamma- and beta-adaptin subunits of AP-1 on ISGs. These experiments provide evidence for a direct interaction of ARF1 with AP-1. On mature secretory granules myristoylated ARF1 does not bind, and hence clathrin coat formation cannot be initiated, supporting the hypothesis that molecules involved in coat recruitment are removed during ISG maturation.  相似文献   

13.
Clathrin-mediated endocytosis depends upon the coordinated assembly of a large number of discrete clathrin coat components to couple cargo selection with rapid internalization from the cell surface. Accordingly, the heterotetrameric AP-2 adaptor complex binds not only to clathrin and select cargo molecules, but also to an extensive family of endocytic accessory factors and alternate sorting adaptors. Physical associations between accessory proteins and AP-2 occur primarily through DP(F/W) or FXDXF motifs, which engage an interaction surface positioned on the C-terminal platform subdomain of the independently folded alpha subunit appendage. Here, we find that the WXX(F/W)X(D/E) interaction motif found in several endocytic proteins, including synaptojanin 1, stonin 2, AAK1, GAK, and NECAP1, binds a second interaction site on the bilobal alpha appendage, located on the N-terminal beta sandwich subdomain. Both alpha appendage binding sites can be engaged synchronously, and our data reveal that varied assemblies of interaction motifs with different affinities for two sites upon the alpha appendage can provide a mechanism for temporal ordering of endocytic accessory proteins during clathrin-mediated endocytosis.  相似文献   

14.
Mutations in the phosphotyrosine binding domain protein ARH cause autosomal recessive hypercholesterolemia, a disorder caused by defective internalization of low density lipoprotein receptors (LDLR) in the liver. To examine the function of ARH, we used pull-down experiments to test for interactions between ARH, the LDLR, and proteins involved in clathrin-mediated endocytosis. The phosphotyrosine binding domain of ARH interacted with the internalization sequence (NPVY) in the cytoplasmic tail of LDLR in a sequence-specific manner. Mutations in the NPVY sequence that were previously shown to decrease LDLR internalization abolished in vitro binding to ARH. Recombinant ARH bound purified bovine clathrin with high affinity (K(D), approximately 44 nm). The interaction between ARH and clathrin was mapped to a canonical clathrin box sequence (LLDLE) in ARH and to the N-terminal domain of the clathrin heavy chain. A highly conserved 20-amino acid sequence in the C-terminal region of ARH bound the beta(2)-adaptin subunit of AP-2. Mutation of a glutamic acid residue in the appendage domain of beta(2)-adaptin that is required for interaction with the adapter protein beta-arrestin markedly reduced binding to ARH. These data are consistent with the hypothesis that ARH functions as an adaptor protein that couples LDLR to the endocytic machinery.  相似文献   

15.
Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization. The interaction of Dvl2 with AP-2 requires simultaneous association of the DEP domain and a peptide YHEL motif within Dvl2 with the C terminus of micro2. Dvl2 mutants in the YHEL motif fail to associate with micro2 and AP-2, and prevent Frizzled4 internalization. Corresponding Xenopus Dishevelled mutants show compromised ability to interfere with gastrulation mediated by the planar cell polarity (PCP) pathway. Conversely, a Dvl2 mutant in its DEP domain impaired in PCP signaling exhibits defective AP-2 interaction and prevents the internalization of Frizzled4. We suggest that the direct interaction of Dvl2 with AP-2 is important for Frizzled internalization and Frizzled/PCP signaling.  相似文献   

16.
Heterotetrameric adaptor (AP) complexes are thought to coordinate cargo recruitment and clathrin assembly during clathrin-coated vesicle biogenesis. We have identified, and characterized the physiological significance of clathrin-binding activities in the two large subunits of the AP-1 complex in Saccharomyces cerevisiae . Using GST-fusion chromatography, two clathrin-binding sites were defined in the β1 subunit that match consensus clathrin-binding sequences in other mammalian and yeast clathrin-binding proteins. Clathrin interactions were also identified with the C-terminal region of the γ subunit. When introduced into chromosomal genes, point mutations in the β1 clathrin-binding motifs, or deletion of the γ C-terminal region, reduced association of AP-1 with clathrin in coimmunoprecipitation assays. The β1 mutations or the γ truncation individually produced minor effects on AP-1 distribution by subcellular fractionation. However, when β1 and γ mutations were combined, severe defects were observed in AP-1 association with membranes and incorporation into clathrin-coated vesicles. The combination of subunit mutations accentuated growth and α-factor pheromone maturation defects in chc1-ts cells, though not to the extent caused by complete loss of AP-1 activity. Our results suggest that both the β1 and γ subunits contribute interactions with clathrin that are important for stable assembly of AP-1 complexes into clathrin coats in vivo .  相似文献   

17.
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.  相似文献   

18.
In neuronal cells the neurotransmitter acetylcholine is transferred from the cytoplasm into synaptic vesicles by the vesicular acetylcholine transporter (VAChT). The cytoplasmic tail of VAChT has been shown to contain signals that direct its sorting and trafficking. The role of clathrin-associated protein complexes in VAChT sorting to synaptic vesicles has been examined. A fusion protein between the VAChT cytoplasmic tail and glutathione S-transferase was used to identify VAChT-clathrin-associated protein adaptor protein 1, adaptor protein 2 and adaptor protein 180 complexes from a rat brain extract. In vivo coimmunoprecipitation confirmed adaptin alpha and adaptin gamma complexes, but adaptor protein 180 complexes were not detected by this technique. Deletion and site directed mutagenesis show that the VAChT cytoplasmic tail contains multiple trafficking signals. These include a non-classical tyrosine motif that serves as the signal for adaptin alpha and a dileucine motif that serves as the signal for adaptin gamma. A classical tyrosine motif is also involved in VAChT trafficking, but does not interact with any known adaptor proteins. There appear to be two endocytosis motifs, one involving the adaptor protein 1 binding site and the other involving the adaptor protein 2 binding site. These results suggest a complex trafficking pathway for VAChT.  相似文献   

19.
AP-4 is a member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post-Golgi compartments. This complex consists of four subunits (epsilon, beta4, mu4 and sigma4) and localizes to the cytoplasmic face of the trans-Golgi network (TGN). Here, we show that the recruitment of endogenous AP-4 to the TGN in vivo is regulated by the small GTP-binding protein ARF1. In addition, we demonstrate a direct interaction of the epsilon and mu4 subunits of AP-4 with ARF1. epsilon binds only to ARF1-GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, mu4 binds equally well to the GTP- and GDP-bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP-4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.  相似文献   

20.
Previously, we reported that the hetero-tetrameric adaptor complex AP-2 co-localizes with the static population of clathrin spots, whereas it is excluded from clathrin spots that disappear from the plasma membrane (forming clathrin-coated vesicles). More recently however, another group provided evidence that AP-2 markers could be observed coincident with disappearing clathrin spots. Thus, we tested several possible explanations for the apparent discrepancies in these two studies. We evaluated the potential contribution of nonred emission of clathrin-dsRed (used in both studies) in the simultaneous measurement of AP-2 and clathrin at various times. Additionally, we directly compared two different green fluorescent protein-tagged AP-2 constructs (similar to those used in the previous reports). These studies demonstrated that the duration of expression time greatly influences the subcellular localization of the AP-2 markers. Furthermore, we quantitatively evaluated the AP-2 fluorescence at the sites of numerous static and disappearing clathrin spots (at least 80 per group) and confirmed our initial observation that while AP-2 is present in nearly all static clathrin spots, it is excluded from the disappearing population of clathrin spots. Finally, in order to verify that clathrin spot disappearance represents clathrin-coated vesicle internalization, we simultaneously imaged clathrin and the cargo molecule transferrin at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号