首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
The molecular mechanisms driving angiogenesis in tissues derived from embryonic stem (ES) cells are currently unknown. Herein we investigated the effects of direct current (DC) electrical field treatment on endothelial cell differentiation and angiogenesis of mouse ES cells. Treatment of ES cell-derived embryoid bodies with field strengths ranging from 250 V/m to 750 V/m, applied for 60 s, dose-dependently increased the capillary area staining positive for the endothelial-specific marker platelet endothelial cell adhesion molecule-1 (PECAM-1), indicating stimulation of endothelial cell differentiation and angiogenesis. Consequently, increased expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) within 24 h was observed. Electric field treatment raised reactive oxygen species (ROS) generation for at least 48 h, which was blunted by NADPH-oxidase inhibitors diphenylen iodonium chloride (DPI) as well as 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), and increased the expression of NADPH-oxidase subunits p22-phox, p47-phox, p67-phox, and gp91-phox within 24 h. Electrical field treatment resulted in activation of extracellular regulated kinase 1,2 (ERK1,2), p38, as well as c-Jun NH2-terminal kinase (JNK). Pretreatment with the JNK inhibitor SP600125 resulted in a significant decrease in capillary areas under control conditions as well as under conditions of electrical field treatment, whereas the p38 inhibitor SB203580 was without effects. By contrast, the ERK1,2 antagonist UO126 inhibited electrical field-induced angiogenesis, whereas angiogenesis under control conditions was unimpaired. The increase in capillary areas and VEGF expression as well as activation of JNK and ERK1,2 was significantly inhibited in the presence of the free radical scavenger vitamin E underscoring the role of ROS in electrical field-induced angiogenesis of ES cells.  相似文献   

4.
IL-10, an anti-inflammatory cytokine, has been shown to exhibit stimulatory functions including CD14 up-regulation on human monocytic cells. CD14-mediated signaling following LPS stimulation of monocytic cells results in the synthesis of proinflammatory cytokines. Our results show that LPS-induced CD14 expression on monocytic cells may be mediated by endogenously produced IL-10. To investigate the molecular mechanism by which IL-10 enhances CD14 expression, both human monocytes and the promyelocytic HL-60 cells were used as model systems. IL-10 induced the phosphorylation of PI3K and p42/44 ERK MAPK. By using specific inhibitors for PI3K (LY294002) and ERK MAPKs (PD98059), we demonstrate that LY294002 either alone or in conjunction with PD98059 inhibited IL-10-induced phosphorylation of STAT-1 and consequently CD14 expression. However, IL-10-induced STAT-3 phosphorylation remained unaffected under these conditions. Finally, STAT-1 interfering RNA inhibited IL-10-induced CD14 expression. Taken together, these results suggest that IL-10-induced CD14 up-regulation in human monocytic cells may be mediated by STAT-1 activation through the activation of PI3K either alone or in concert with the ERK MAPK.  相似文献   

5.
Human group IIA secreted phospholipase A2 (sPLA2-IIA) has been characterized in numerous inflammatory and neoplastic conditions. sPLA2-IIA can either promote or inhibit cell growth depending on the cellular type and the specific injury. We have previously demonstrated that exogenous sPLA2-IIA, by engagement to a membrane structure, induces proliferation and activation of mitogen-activated protein kinases cascade in human astrocytoma cells. In this study, we used human astrocytoma 1321N1 cells to investigate the key molecules mediating sPLA2-IIA-induced cell proliferation. We found that sPLA2-IIA promoted reactive oxygen species (ROS) accumulation, which was abrogated in the presence of allopurinol and DPI, but not by rotenone, discarding mitochondria as a ROS source. In addition, sPLA2-IIA triggered Ras and Raf-1 activation, with kinetics that paralleled ERK phosphorylation, and co-immunoprecipitation assays indicated an association between Ras, Raf-1 and ERK. Additionally, Akt, p70 ribosomal protein S6 kinase, and S6 ribosomal protein were also phosphorylated upon sPLA2-IIA treatment, effect that was abrogated by N -acetylcysteine or LY294002 treatment indicating that ROS and phosphatidylinositol 3 kinase are upstream signaling regulators. As the inhibitors N -acetylcysteine, PD98059, LY294002 or rapamycin blocked sPLA2-IIA-induced proliferation without activation of the apoptotic program, we suggest that inhibition of these intracellular signal transduction elements may represent a mechanism of growth arrest. Our results reveal new potential targets for therapeutic intervention in neuroinflammatory disorders and brain cancer in particular.  相似文献   

6.
Platelet-derived growth factor (PDGF) has multiple functions including inhibition of apoptosis and promotion of cell proliferation. In this study, we show that Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) binds to the carboxyl-terminal PDZ domain-binding motif of the PDGF receptor through a PDZ domain-mediated interaction, and evaluate the consequence on PDGF-induced proliferation. Stable transfection with NHERF2 increased the PDGF-induced phosphorylation of ERK and Akt in Rat1 embryonic fibroblasts. The phosphorylation of Akt was blocked by pretreatment with LY294002, a PI-3-kinase inhibitor, in both Rat1/NHERF2 and Rat1/vector cells. In Rat1/vector cells, PDGF-induced phosphorylation of ERK was completely inhibited by pretreatment with PD98059, a MEK inhibitor. In contrast, the NHERF2-dependent increase of ERK phosphorylation was not affected by pretreatment with PD98059 in Rat1/NHERF2 cells. Thus, the NHERF2-dependent increase of ERK phosphorylation occurs in a MEK-independent fashion. Pretreatment with PP2, a specific inhibitor of Src family tyrosine kinase, completely blocked the NHERF2-dependent increase of the phosphorylation of ERK and Akt, suggesting that NHERF2 up-regulates Erk phosphorylation through a Src family kinase-dependent pathway. Consistent with these results, the PDGF-induced thymidine incorporation was increased in Rat1/NHERF2 cells, and the NHERF2-dependent increase of thymidine incorporation was prevented by treatment with LY294002 and PP2 but not with PD98059. These results suggest that NHERF2 stimulates PDGF-induced proliferation by increasing PI-3-kinase/Akt, MEKindependent ERK, and Src family kinase-mediated signaling pathways.  相似文献   

7.
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.  相似文献   

8.
We examined the effects of the adipose hormone leptin on the development of mouse cortical neurons. Treatment of neonatal and adult mice with intraperitoneal leptin (5 mg/kg) induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in pyriform and entorhinal cortex neurons. Stimulation of cultured embryonic cortical neurons with leptin evoked Janus kinase 2 and ERK1/2 phosphorylation and activated the downstream effector 90-kDa ribosomal protein S6 kinase. Moreover, leptin elicited the phosphorylation of the phosphatidylinositol 3-kinase effector Akt and evoked Ser-9 phosphorylation of glycogen synthase kinase-3beta (GSK3beta), an event inactivating this kinase. Leptin-mediated GSK3beta phosphorylation was prevented by the MEK/ERK inhibitor PD98059, the phosphatidylinositol 3-kinase inhibitor LY294002, or the protein kinase C inhibitor GF109203X. Exposure of cortical neurons to leptin also induced Ser-41 phosphorylation of the neuronal growth-associated protein GAP-43, an effect prevented by LY294002 and GF109203X but not by PD98059. Ser-41-GAP-43 phosphorylation is usually high in expanding axonal growth cones. Neurons exposed to 100 ng/ml leptin for 72 h displayed reduced rate of growth cone collapse, a shift of growth cone size distribution toward higher values, and a 4-fold increase in mean growth cone surface area compared with control cultures. The leptin-induced growth cone spreading was hampered in cortical neurons from Lepr(db/db) mice lacking functional leptin receptors; it was associated with localized Ser-9-GSK3beta phosphorylation and mimicked by the GSK3beta inhibitor SB216763. At concentrations preventing GSK3beta phosphorylation, PD98059, LY294002, or GF109203X reversed the leptin-induced growth cone surface enlargement. We concluded that the leptin-mediated regulation of growth cone morphogenesis in cortical neurons relies on upstream regulators of GSK3beta activity.  相似文献   

9.
Du J  Xu R  Hu Z  Tian Y  Zhu Y  Gu L  Zhou L 《PloS one》2011,6(9):e25213

Background

Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown.

Methodology/Principal Findings

In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression.

Conclusions/Significance

Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1.  相似文献   

10.
目的:用低血清培养液来模拟肾脏供血不足的营养不良状态,研究低浓度哇巴因对低血清培养下OK细胞(负鼠肾小管上皮细胞)增殖的影响。方法:用低浓度哇巴因(1-30n M)处理0.2%血清培养下OK细胞,MTT实验和Brdu掺入法检测哇巴因对OK细胞增殖的影响;Western blot检测Akt和ERK1/2的磷酸化水平;用LY294002和PD98059分别抑制PI3K/Akt和ERK1/2蛋白激酶活性,观察抑制PI3K/Akt和ERK1/2对哇巴因促进OK细胞增殖的影响。结果:低浓度哇巴因(1-30n M)促进OK细胞的增值,上调OK细胞中Akt和ERK1/2磷酸化水平。用LY294002和PD98059特异抑制Akt和ERK1/2的活化能够抑制哇巴因的促增殖作用。结论:低浓度哇巴因(1-10n M)能够促进OK细胞的增值,PI3K/Akt和ERK1/2信号通路参与哇巴因对OK细胞促增殖作用的调节。  相似文献   

11.
We examined whether cGMP-dependent protein kinase (PKG) and mitochondrial ATP-sensitive potassium (K(ATP)) channels are involved in S-nitroso-N-acetyl penicillamine (SNAP)-induced reactive oxygen species (ROS) generation. SNAP significantly increased ROS generation in cardiomyocytes. This increase was suppressed by both 5-hydroxydecanoate (5-HD) and glibenclamide. Direct opening of mitochondrial K(ATP) channels with diazoxide led to ROS generation. The increased ROS generation was reversed by N-(2-mercaptopropionyl)glycine (MPG), a scavenger of ROS. Myxothiazol partially suppressed the ROS generation. KT-5823, an inhibitor of PKG, prevented ROS generation, indicating that PKG is required for ROS generation. In addition, 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), an activator of PKG, induced ROS generation. The effect of 8-BrcGMP was reversed by either 5-HD or MPG. YC-1, an activator of guanylyl cyclase, also increased ROS production, which was reversed by 5-HD. Neither LY-294002 nor wortmannin, the inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), affected SNAP's action. In a whole heart study, SNAP significantly reduced infarct size. The anti-infarct effect of SNAP was abrogated by either MPG or 5-HD. This effect was also blocked by PD-98059, an ERK inhibitor, but not by LY-294002. A Western blotting study showed that SNAP significantly enhanced phosphorylation of ERK, which was reversed by MPG. These results suggest that SNAP-induced ROS generation is mediated by activation of PKG and mitochondrial K(ATP) channels and that opening of mitochondrial K(ATP) channels is the downstream event of PKG activation. ROS and mitochondrial K(ATP) channels participate in the anti-infarct effect of SNAP. Moreover, phosphorylation of ERK is the downstream signaling event of ROS and plays a role in the cardioprotection of SNAP.  相似文献   

12.
Pertussis toxin (PTX) has recently been shown to specifically bind to CD14 to promote myelomonocytic cell adhesion to serum. The present study investigated the signaling mechanisms responsible for PTX-induced differentiated U937 cell adhesion. PTX-induced myelomonocytic cell adhesion was blocked by genistein or tyrphostin-47 (two protein tyrosine kinase inhibitors), LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor), or PD098059 (a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor). PTX induced a rapid tyrosine phosphorylation of several discrete cytoplasmic proteins, which could be inhibited by genistein or tyrphostin 47. In addition, PTX induced phosphorylation of Akt and of ERK2, which could be completely blocked by LY294002 and PD098059, respectively, and by genistein or tyrphostin 47 as well. All of these PTX-induced signaling events could be reproduced using purified PTX B-oligomer (PTX-B) alone. Our data show that PTX can activate tyrosine kinase signaling cascade, including the downstream PI3K and ERK/MAPK pathways, in myelomonocytic cells to induce cell adhesion to serum.  相似文献   

13.
14.
Mesonephric cell migration and seminiferous cord formation are critical processes in embryonic testis development at the time of male sex determination. Extracellular growth factors shown to influence seminiferous cord formation such as neurotropin-3 utilize in part the phosphotidylinositol 3-kinase (PI3K) signal transduction pathway. The current study investigates the hypothesis that the PI3K pathway is critical in seminiferous cord formation and testis development. The role of the PI3K signaling pathway in testicular cord formation was examined using an Embryonic Day 13 organ culture system and a PI3K-specific inhibitor LY294002. The actions of a mitogen-activated protein (MAP) kinase-specific inhibitor PD98059 was also examined. The PI3K inhibitor blocked cord formation or reduced the number of cords in a concentration-dependent manner. The actions of LY294002 were found to have a developmental stage specificity in that cord inhibition was observed in organs from embryos with 16-17 tail somites, while organs from embryos with 19 or more tail somites had no block in cord formation and only a small reduction in cord number. In contrast, the MAP kinase inhibitor PD98059 did not block cord formation and only caused a slight reduction in cord number. Neither PI3K or MAP kinase inhibitor altered apoptotic cell number, suggesting apoptosis was not the reason for the inhibition of cord formation. Embryonic testis cell migration assays showed that the PI3K inhibitor LY294002 blocked mesonephros cell migration into the testis, while the MAP kinase inhibitor had no effect. Observations suggest the interference of cell migration is the cause for the inhibition of cord formation. Western blot analysis confirmed that LY294002 and PD98509 inhibited phosphorylation of Akt and ERK1/ERK2, respectively. Combined observations demonstrate that the PI3K signaling pathway is involved in embryonic testis cord formation and mesonephros cell migration.  相似文献   

15.
We investigated the role of receptor tyrosine kinases in Ang II-stimulated generation of reactive oxygen species (ROS) and assessed whether MAP kinase signaling by Ang II is mediated via redox-sensitive pathways. Production of ROS and activation of NADPH oxidase were determined by DCFDA (dichlorodihydrofluorescein diacetate; 2 micromol/L) fluorescence and lucigenin (5 micromol/L) chemiluminescence, respectively, in rat vascular smooth muscle cells (VSMC). Phosphorylation of ERK1/2, p38MAP kinase and ERK5 was determined by immunoblotting. The role of insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) was assessed with the antagonists AG1024 and AG1478, respectively. ROS bioavailability was manipulated with Tiron (10(-5) mol/L), an intracellular scavenger, and diphenylene iodinium (DPI; 10(-6) mol/L), an NADPH oxidase inhibitor. Ang II stimulated NADPH oxidase activity and dose-dependently increased ROS production (p < 0.05). These actions were reduced by AG1024 and AG1478. Ang II-induced ERK1/2 phosphorylation (276% of control) was decreased by AG1478 and AG1024. Neither DPI nor tiron influenced Ang II-stimulated ERK1/2 activity. Ang II increased phosphorylation of p38 MAP kinase (204% of control) and ERK5 (278% of control). These effects were reduced by AG1024 and AG1478 and almost abolished by DPI and tiron. Thus Ang II stimulates production of NADPH-inducible ROS partially through transactivation of IGF-1R and EGFR. Inhibition of receptor tyrosine kinases and reduced ROS bioavaliability attenuated Ang II-induced phosphorylation of p38 MAP kinase and ERK5, but not of ERK1/2. These findings suggest that Ang II activates p38MAP kinase and ERK5 via redox-dependent cascades that are regulated by IGF-1R and EGFR transactivation. ERK1/2 regulation by Ang II is via redox-insensitive pathways.  相似文献   

16.
Hsieh HL  Yen MH  Jou MJ  Yang CM 《Cellular signalling》2004,16(10):1163-1176
Bradykinin (BK), an inflammatory mediator, has been shown to increase the expression of proteins such as matrix metalloproteinases (MMPs) on brain cells and contributes to the pathophysiology of inflammatory responses. However, the mechanisms regulating MMP-9 expression by BK in rat brain astrocytes-1 (RBA-1) remain unclear. Here we report that the mitogen-activated protein kinase (MAPK) and NF-kappaB pathways participate in the induction of MMP-9 expression induced by BK in RBA cells. Zymographic, Western blotting, and RT-PCR analyses showed that BK increased expression of MMP-9 mRNA and protein in a time- and concentration-dependent manner. BK-induced MMP-9 mRNA and protein expression was inhibited by MEK1/2 inhibitor PD98059, PI3-K inhibitor LY294002, and NF-kappaB inhibitor helenalin. In accordance with these findings, BK-induced phosphorylation of p42/p44 MAPK and Akt and activation of NF-kappaB was attenuated by prior treatment with PD98059, LY294002, and helenalin, respectively. The effects of BK on MMP-9 expression and p42/p44 MAPK and Akt phosphorylation were inhibited by B(2) receptor antagonist Hoe 140, indicating the involvement of B(2) receptors revealed by [(3)H]-BK binding assay. Furthermore, BK-stimulated translocation of NF-kappaB into the nucleus was revealed by Western blotting and immnofluorescence staining and blocked by Hoe140, PD98059, LY294002, and helenalin. Taken together, these results suggest that in RBA cells, activation of p42/p44 MAPK and Akt cascades mediated through NF-kappaB pathway are essential for BK-induced MMP-9 gene expression. This study may provide insights into the regulation of MMP-9 production in CNS, which may occur in vivo in pathological situations such as CNS inflammation and brain astrocytoma.  相似文献   

17.
18.
To understand the role of eicosanoids in angiogenesis, we have studied the effect of lipoxygenase metabolites of arachidonic acid on human microvascular endothelial cell (HMVEC) DNA synthesis. Among the various lipoxygenase metabolites of arachidonic acid tested, 5(S)-hydroxyeicosatetraenoic acid (5(S)-HETE) induced DNA synthesis in HMVEC. 5(S)-HETE also stimulated Jak-2, STAT-1, and STAT-3 tyrosine phosphorylation and STAT-3-DNA binding activity. Tyrphostin AG490, a specific inhibitor of Jak-2, significantly reduced tyrosine phosphorylation and DNA binding activity of STAT-3 and DNA synthesis induced by 5(S)-HETE. In addition, 5(S)-HETE stimulated phosphatidylinositol 3-kinase (PI3-kinase) activity and phosphorylation of its downstream targets Akt, p70S6K, and 4E-BP1 and their effector molecules ribosomal protein S6 and eIF4E. LY294002 and rapamycin, potent inhibitors of PI3-kinase and mTOR, respectively, also blocked the DNA synthesis induced by 5(S)-HETE. Interestingly, AG490 attenuated 5(S)-HETE-induced PI3-kinase activity and phosphorylation of Akt, p70S6K, ribosomal protein S6, 4E-BP1, and eIF4E. 5(S)-HETE induced the expression of basic fibroblast growth factor 2 (bFGF-2) in a Jak-2- and PI3-kinase-dependent manner. In addition, a neutralizing anti-bFGF-2 antibody completely blocked 5(S)-HETE-induced DNA synthesis in HMVEC. Together these results suggest that 5(S)-HETE stimulates HMVEC growth via Jak-2- and PI3-kinase-dependent induction of expression of bFGF-2. These findings also reveal a cross-talk between Jak-2 and PI3-kinase in response to 5(S)-HETE in HMVEC.  相似文献   

19.
The roles of reactive oxygen species (ROS), extracellular signal-regulated kinase 1/2 (ERK 1/2) and mitochondrial permeability transition pore (mPTP) in sevoflurane postconditioning induced cardioprotection against ischemia-reperfusion injury in Langendorff rat hearts were investigated. When compared with the unprotected hearts subjected to 30 min of ischemia followed by 1 h of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved functional recovery, decreased infarct size, reduced lactate dehydrogenase and creatine kinase-MB release, and reduced myocardial malondialdehyde production. However, these protective effects were abolished in the presence of either ROS scavenger N-acetylcysteine or ERK 1/2 inhibitor PD98059, and accompanied by prevention of ERK 1/2 phosphorylation and elimination of inhibitory effect on mPTP opening. These findings suggested that sevoflurane postconditioning protected isolated rat hearts against ischemia-reperfusion injury via the recruitment of the ROS-ERK 1/2-mPTP signaling cascade.  相似文献   

20.
Activated neutrophils play an important role in the pathogenesis of sepsis, glomerulonephritis, acute renal failure, and other inflammatory processes. The resolution of neutrophil-induced inflammation relies, in large part, on removal of apoptotic neutrophils. Neutrophils are constitutively committed to apoptosis, but inflammatory mediators, such as GM-CSF, slow neutrophil apoptosis by incompletely understood mechanisms. We addressed the hypothesis that GM-CSF delays neutrophil apoptosis by activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI 3-kinase) pathways. GM-CSF (20 ng/ml) significantly inhibited neutrophil apoptosis (GM-CSF, 32 vs 65% of cells p < 0. 0001). GM-CSF activated the PI 3-kinase/Akt pathway as determined by phosphorylation of Akt and BAD. GM-CSF-dependent Akt and BAD phosphorylation was blocked by the PI 3-kinase inhibitor LY294002. A role for the PI 3-kinase/Akt pathway in GM-CSF-stimulated delay of apoptosis was indicated by the ability of LY294002 to attenuate apoptosis delay. GM-CSF-dependent inhibition of apoptosis was significantly attenuated by PD98059, an ERK pathway inhibitor. LY294002 and PD98059 did not produce additive inhibition of apoptosis delay. To determine whether PI 3-kinase and ERK are used by other ligands that delay neutrophil apoptosis, we examined the role of these pathways in IL-8-induced apoptosis delay. LY294002 blocked IL-8-dependent Akt phosphorylation. PD98059 and LY294002 significantly attenuated IL-8 delay of apoptosis. These results indicate IL-8 and GM-CSF act, in part, to delay neutrophil apoptosis by stimulating PI 3-kinase and ERK-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号