首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to solar radiation can produce both acute and chronic changes in the skin, including sunburn, edema, immunosuppression, premature skin aging, and skin cancer. At the cellular level, solar radiation can produce adverse structural and functional changes in membrane proteins and lipids and in chromosomal and mitochondrial DNA. The increasing awareness of these adverse effects has led the public to demand better photoprotection. In this study, the alkaline comet assay was used to evaluate the photoprotective effects of three commercially available sunscreens at sun protection factors (SPF) 15 and 30. Human fibroblasts were used as target cells to conveniently study the effects of solar simulated radiation on DNA damage in the presence and absence of sunscreens. When human fibroblasts were exposed to various doses of solar simulated radiation, DNA damage, as measured in sunscreen-protected cells by the comet assay, was not significantly different from that detected in unexposed cells. At 1.0 and 1.5 minimal erythemal doses (MED), all sunscreens, at both SPF 15 and 30, provided nearly 100% photoprotection to the fibroblasts. Further studies are required to elucidate the role of UVA in the production and repair of DNA damage in cells exposed to sunlight.  相似文献   

2.
The present study was aimed to evaluate the radioprotective efficacy of dendrodoine analog (DA), an aminothiazole derivative against X-ray radiation-induced cellular damage in cultured human peripheral blood lymphocytes. Different concentrations of DA (2, 4, 6, 8, 10 μg/ml or 6.15, 12.29, 18.44, 24.59, 30.73 μM) were pre-incubated with lymphocytes for 30 min prior to irradiation [4 Gy] and the micronuclei (MN) scoring and comet assay were performed to fix the effective concentration of DA against 4 Gy irradiation-induced cellular damage. The results indicated that among all the concentrations, 6 μg/ml concentration of DA showed optimum protection by effectively decreasing the MN frequencies and comet attributes. Based on the above results, 6 μg/ml concentration of DA was fixed as the effective dose to further investigate its radioprotective efficacy. This was carried out by pre-incubating the lymphocytes with 6 μg/ml concentration of DA followed by exposure of the lymphocytes to different doses (1, 2, 3 and 4 Gy) of radiation and investigating the radiation-induced genetic damage (MN, comet assay, DNA fragmentation assay) and biochemical changes (changes in the level of enzymic and non-enzymic antioxidants, lipid peroxidation). The results indicated a dose-dependent increase in both genetic damage and thiobarbituric acid reactive substances (TBARS), accompanied by a significant decrease in the antioxidant status in the irradiated groups compared to DA treated groups which modulated the toxic effects through its antioxidant potential. Thus the current study shows DA to be an effective radioprotector against X-ray radiation induced in vitro cellular damage in lymphocytes.  相似文献   

3.
Protection against radiation-induced degradation of DNA bases by polyamines   总被引:3,自引:0,他引:3  
Polyamines have been reported to protect DNA against the formation of radiation-induced strand breaks and crosslinks to proteins. The present study was aimed at investigating the protective effect of spermine, spermidine and putrescine against the degradation of DNA bases upon exposure to gamma rays in aerated aqueous solution. The yield of 8-oxo-7,8-dihydroguanine and 5-hydroxycytosine was found to decrease for concentrations of spermine and spermidine greater than 0.1 mM. A protection factor of 10 was observed for a concentration of 1 mM of the latter two polyamines. Putrescine afforded a lower protection. In addition, the formation yield of a series of radiation-induced degradation products of the purine and pyrimidine bases was determined within DNA in the presence or absence of spermine. The protection factor was within the same range for all the lesions measured. The latter observation ruled out the possibility of degradation of DNA by radiation-induced polyamine peroxyl radicals. This was confirmed by studies involving radiolysis of DMSO and decomposition of 2,2'-azobis(2-methyl-propionamidine) as sources of alkylperoxyl radicals. Therefore, it is likely that the polyamine-mediated protection against the radiation-induced degradation of DNA bases is due to the compaction of the DNA structure and the reduction in the accessibility of DNA to .OH rather than by scavenging .OH in the bulk solution or in the vicinity of the DNA.  相似文献   

4.
5.
Protein oxidation can contribute to radiation-induced cell death by two mechanisms: (1) by reducing the fidelity of DNA repair, and (2) by decreasing cell viability directly. Previously, we explored the first mechanism by developing a mathematical model and applying it to data on Deinococcus radiodurans . Here we extend the model to both mechanisms, and analyze a recently published data set of protein carbonylation and cell survival in D. radiodurans and Escherichia coli exposed to gamma and ultraviolet radiation. Our results suggest that similar cell survival curves can be produced by very different mechanisms. For example, wild-type E. coli and DNA double-strand break (DSB) repair-deficient recA- D. radiodurans succumb to radiation doses of similar magnitude, but for different reasons: wild-type E. coli proteins are easily oxidized, causing cell death even at low levels of DNA damage, whereas proteins in recA- D. radiodurans are well protected from oxidation, but DSBs are not repaired correctly even when most proteins are intact. Radioresistant E. coli mutants survive higher radiation doses than the wild-type because of superior protection of cellular proteins from radiogenic oxidation. In contrast, wild-type D. radiodurans is much more radioresistant than the recA- mutant because of superior DSB repair, whereas protein protection in both strains is similar. With further development, the modeling approach presented here can also quantify the causes of radiation-induced cell death in other organisms. Enhanced understanding of these causes can stimulate research on novel radioprotection strategies.  相似文献   

6.
Nayak V  Devi PU 《Radiation research》2005,163(2):165-171
In a previous study, orientin and vicenin, the water-soluble plant flavonoids, protected mice against radiation lethality (Uma Devi et al., Radiat. Res. 151, 74-78, 1999). To study bone marrow protection, adult Swiss mice were exposed to 0-6 Gy 60Co gamma rays 30 min after an intraperitoneal injection of 50 microg/ kg body weight of orientin/vicenin. Chromosomal aberrations in bone marrow were studied at 24 h postirradiation. Stem cell survival was studied using the exogenous spleen colony (CFU-S) assay. Radiation produced a dose-dependent increase in aberrant cells as well as in the yield of the different types of aberrations (breaks, fragments, rings and dicentrics) and a decrease in CFU-S. Pretreatment with either flavonoid significantly reduced the aberrant cells and different aberrations and increased the number of CFU-S compared to the respective radiation-alone groups. The dose modification factors for 50% reductions in the number of CFU-S were 1.6 for orientin and 1.7 for vicenin. The present finding that very low nontoxic doses of orientin and vicenin provide efficient protection against bone marrow damage at clinically relevant radiation doses suggests their potential for protection of normal tissues in radiotherapy.  相似文献   

7.
Homopolydeoxyribonucleotides, poly[dGuo], poly[dAdo], poly[dThd], and poly[dCyd], and calf thymus single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) aqueous solutions previously exposed to gamma radiation doses between 2 and 35 Gy, were studied by differential pulse voltammetry using a glassy carbon electrode. The interpretation of the voltammetric data was also supported by the electrophoretic migration profile obtained for the same ssDNA and dsDNA gamma-irradiated samples by nondenaturing agarose gel electrophoresis. The generation of 8-oxo-7,8-dihydroguanine, 2,8-dihydroxyadenine, 5-formyluracil, base-free sites, and single- and double-stranded breaks in the gamma-irradiated DNA samples was detected voltammetrically, with the amount depending on the irradiation time. It was found that the current peaks obtained for 8-oxoguanine increase linearly with the radiation dose applied to the nucleic acid sample, and values between 8 and 446 8-oxo-7,8-dihydroguanine (8-oxoGua) per 10(6) guanines per Gy were obtained according to the nucleic acid sample. The results showed that voltammetry can be used for monitoring and simultaneously characterizing different kinds of DNA damage caused by gamma radiation exposure.  相似文献   

8.
Inhibition of the accumulation of protease-resistant prion protein (PrP-res) is a prime strategy in the development of potential transmissible spongiform encephalopathy (TSE) therapeutics. Here we show that curcumin (diferoylmethane), a major component of the spice turmeric, potently inhibits PrP-res accumulation in scrapie agent-infected neuroblastoma cells (50% inhibitory concentration, approximately 10 nM) and partially inhibits the cell-free conversion of PrP to PrP-res. In vivo studies showed that dietary administration of curcumin had no significant effect on the onset of scrapie in hamsters. Nonetheless, other studies have shown that curcumin is nontoxic and can penetrate the brain, properties that give curcumin advantages over inhibitors previously identified as potential prophylactic and/or therapeutic anti-TSE compounds.  相似文献   

9.
Chromoanagenesis is a genomic catastrophe that results in chromosomal shattering and reassembly. These extreme single chromosome events were first identified in cancer, and have since been observed in other systems, but have so far only been formally documented in plants in the context of haploid induction crosses. The frequency, origins, consequences, and evolutionary impact of such major chromosomal remodeling in other situations remain obscure. Here, we demonstrate the occurrence of chromoanagenesis in poplar (Populus sp.) trees produced from gamma-irradiated pollen. Specifically, in this population of siblings carrying indel mutations, two individuals exhibited highly frequent copy number variation (CNV) clustered on a single chromosome, one of the hallmarks of chromoanagenesis. Using short-read sequencing, we confirmed the presence of clustered segmental rearrangement. Independently, we identified and validated novel DNA junctions and confirmed that they were clustered and corresponded to these rearrangements. Our reconstruction of the novel sequences suggests that the chromosomal segments have reorganized randomly to produce a novel rearranged chromosome but that two different mechanisms might be at play. Our results indicate that gamma irradiation can trigger chromoanagenesis, suggesting that this may also occur when natural or induced mutagens cause DNA breaks. We further demonstrate that such events can be tolerated in poplar, and even replicated clonally, providing an attractive system for more in-depth investigations of their consequences.  相似文献   

10.
The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated.  相似文献   

11.
12.
Radiation-induced chromosomal damage (after exposure to 1 Gy) in lymphocytes was studied in relation to transferrin C subtype (C1 vs. C2). In 72-hour lymphocyte cultures a significantly increased frequency of cells with radiation induced aberrations was observed in individuals with the transferrin type C2. Thus the results lend some support to the hypothesis that transferrin C2 may act as an enhancer of chromosomal damage.  相似文献   

13.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1-2.0 Gy). Intratesticular injections of S1P given 1-2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%-47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.  相似文献   

14.
Protection from UV-B-induced DNA damage by flavonoids   总被引:11,自引:0,他引:11  
  相似文献   

15.
The effect of glutamine on radiation-induced organ damage   总被引:4,自引:0,他引:4  
Radiation enteritis is a significant clinical problem in patients receiving ionizing radiation directed to the abdomen or pelvis. Although radiation is aimed to be directed against the malignant tissue, adjacent healthy tissues are also affected. The small intestine is the most sensitive organ to radiation. The present study was undertaken to investigate the possible protective effect of glutamine against radiation-induced intestinal, hepatic and pancreatic toxicity. Rats received 1 g/kg/day glutamine for seven days before irradiation and continued for three days after irradiation until sacrifice. Then intestinal, pancreatic and hepatic myeloperoxidase (MPO) activities, malondialdehyde (MDA) levels and caspase-3 activities of the sacrificed rats were measured. Irradiation significantly increased the intestinal and pancreatic MPO and caspase-3 activities and MDA levels in comparison to sham group. Glutamine treatment significantly decreased this elevation. Histopathological examination revealed that the intestinal mucosal structure was preserved and pancreatic inflammation decreased in the glutamine treated group. In irradiation group, NF-kappaB over expression was detected. There was no significant difference in histopathological and biochemical examinations of the liver between the groups. In conclusion, glutamine has beneficial effects on intestinal and pancreatic damage in abdominal irradiation through the inflammatory process and apoptosis.  相似文献   

16.
T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage.Subject terms: Tumour biomarkers, Oncogenes, Preclinical research  相似文献   

17.
Protection of DNA damage by dietary restriction.   总被引:5,自引:0,他引:5  
Dietary restriction is known to retard the aging processes and delay the onset of age-related neoplastic diseases. The mechanisms underlying these remarkable actions of nutritional intervention are not known in spite of recently intensified research efforts. However, the last couple of years' research on dietary restriction produced strong evidence indicating that its effective antiaging actions might be related to its ability to modulate free radical damage. In the present study, DNA damage and attenuation of the damage by dietary restriction were assessed by measuring 8-hydroxydeoxyguanosine 8-OH dG) in both nuclear DNA (nuDNA) and mitochondrial DNA (mitDNA) fractions. The data show that substantially more damage (approximately 15 times) occurred in mitDNA compared to nuDNA. More interestingly, the DNA damage was significantly attenuated in dietarily restricted rats.  相似文献   

18.
Curcumin, the major constituent of turmeric is a known antioxidant. We have examined the oxidative folding of the model four-disulfide-bond-containing protein bovine pancreatic ribonuclease A (RNase A) in its presence; results indicate that RNase A regeneration rate increases in a curcumin-dependent manner. Examination of the native tendency of the fully-reduced polypeptide and the stability of key folding intermediates suggests that the increased oxidative folding rate can be attributed to native-like elements induced within the fully-reduced polypeptide and the stabilization of native-like species by this non-redox-active natural product. Our results provide a template for the design of curcuminoid-based synthetic small-molecule fold catalysts that accelerate the folding of ER-processed proteins; this assumes significance given that nitrosative stress and dysfunction of the ER-resident oxidoreductase protein disulfide isomerise due to S-nitrosylation are factors associated with the pathogenesis of Alzheimer’s and Parkinson’s diseases.  相似文献   

19.
20.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号