首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
A factor, secreted by theca cells, inhibits FSH induced resumption of meiosis in bovine oocytes that are surrounded by cumulus cells which are attached to a piece of the membrana granulosa (COCGs). In order to characterize this factor, theca cell conditioned medium (CMt) was heat-treated, filtered through a 5 kD spin off filter, charcoal treated, chloroform extracted and protease treated. To investigate whether the meiosis inhibiting factor produced by theca cells was also present in follicular fluid (FF), the same treatments were done with 50% bovine follicular fluid (bFF). COCGs, originating from 2 to 8 mm follicles of bovine ovaries collected at a slaughterhouse, were cultured in groups of 15 per 600 microl medium supplemented with 0.05 IU ml FSH for 22 hr at 39 degrees C in a humidified atmosphere of 5% CO(2). After culture the oocytes were denuded, stained with orcein, and the nuclear status assessed. Heat treatment did not affect the meiosis arresting capacity of CMt since a similar proportion of the oocytes remained at the GV stage after 22 hr of culture in heat treated CMt as compared to the proportion of oocytes in the GV stage after culture in untreated CMt. Filtering through a 5 kD spin-off filter revealed that the meiosis inhibiting action was maintained in the <5 kD fraction, although there was a significant (P < 0.05) loss of inhibiting activity compared to nonfiltered CMt. No significant decrease was observed in the meiosis arresting capacity of the <5 kD fraction after charcoal or protease treatment. Extraction of the <5 kD fraction with chloroform also did not affect the theca cell produced factor. The effect of the theca cell factor on the progression of meiosis of the oocytes that resumed meiosis, as demonstrated by a very low percentage of the oocytes that matured up to the M2 stage, was not affected following any of the treatments. With regard to bFF, the results show a lower percentage of the oocytes in the GV stage after culture in 50% bFF as compared to culture in CMt, but progression of meiosis was clearly inhibited as demonstrated by a significant higher proportion of the oocytes blocked in the M1 stage after resumption of meiosis. In general, with regard to meiotic inhibition, bFF showed the same pattern as CMt following the various treatments. It is concluded that the theca cell secreted factor which inhibits the FSH-induced resumption of meiosis in COCGs is a small, stable, polar molecule which is not a peptide.  相似文献   

2.
Calcium-dependent signaling pathways are thought to be involved in the regulation of mammalian oocyte meiotic maturation. However, the molecular linkages between the calcium signal and the processes driving meiotic maturation are not clearly defined. The present study was conducted to test the hypothesis that the multi-functional calcium/calmodulin-dependent protein kinase II (CaM KII) functions as one of these key linkers. Mouse oocytes were treated with a pharmacological CaM KII inhibitor, KN-93, or a peptide CaM KII inhibitor, myristoylated AIP, and assessed for the progression of meiosis. Two systems for in vitro oocyte maturation were used: (1) spontaneous gonadotropin-independent maturation and (2) follicle-stimulating hormone (FSH)-induced reversal of hypoxanthine-mediated meiotic arrest. FSH-induced, but not spontaneous germinal vesicle breakdown (GVB) was dose-dependently inhibited by both myristoylated AIP and KN-93, but not its inactive analog, KN-92. However, emission of the first polar body (PB1) was inhibited by myristoylated AIP and KN-93 in both oocyte maturation systems. Oocytes that failed to produce PB1 exhibited normal-appearing metaphase I chromosome congression and spindles indicating that CaM KII inhibitors blocked the metaphase I to anaphase I transition. Similar results were obtained when the oocytes were treated with a calmodulin antagonist, W-7, and matured spontaneously. These results suggest that CaM KII, and hence the calcium signaling pathway, is potentially involved in regulating the meiotic maturation of mouse oocytes. This kinase both participates in gonadotropin-induced resumption of meiosis, as well as promoting the metaphase I to anaphase I transition. Further evidence is therefore, provided of the critical role of calcium-dependent pathways in mammalian oocyte maturation.  相似文献   

3.
Meiotic crossovers facilitate the segregation of homologous chromosomes and increase genetic diversity. The formation of meiotic crossovers was previously posited to occur via two pathways, with the relative use of each pathway varying between organisms; however, this paradigm could not explain all crossovers, and many of the key proteins involved were unidentified. Recent studies that identify some of these proteins reinforce and expand the model of two meiotic crossover pathways. The results provide novel insights into the evolutionary origins of the pathways, suggesting that one is similar to a mitotic DNA repair pathway and the other evolved to incorporate special features unique to meiosis.  相似文献   

4.
Chromatin structure and function are for a large part determined by the six members of the structural maintenance of chromosomes (SMC) protein family, which form three heterodimeric complexes: Smc1/3 (cohesin), Smc2/4 (condensin) and Smc5/6. Each complex has distinct and important roles in chromatin dynamics, gene expression and differentiation. In yeast and Drosophila, Smc6 is involved in recombinational repair, restarting collapsed replication forks and prevention of recombination in repetitive sequences such as rDNA and pericentromeric heterochromatin. Although such DNA damage control mechanisms, as well as highly dynamic changes in chromatin composition and function, are essential for gametogenesis, knowledge on Smc6 function in mammalian systems is limited. We therefore have investigated the role of Smc6 during mammalian spermatogonial differentiation, meiosis and subsequent spermiogenesis. We found that, during mouse spermatogenesis, Smc6 functions as part of meiotic pericentromeric heterochromatin domains that are initiated when differentiating spermatogonia become irreversibly committed toward meiosis. To our knowledge, we are the first to provide insight into how commitment toward meiosis alters chromatin structure and dynamics, thereby setting apart differentiating spermatogonia from the undifferentiated spermatogonia, including the spermatogonial stem cells. Interestingly, Smc6 is not essential for spermatogonial mitosis, whereas Smc6-negative meiotic cells appear unable to finish their first meiotic division. Importantly, during meiosis, we find that DNA repair or recombination sites, marked by γH2AX or Rad51 respectively, do not co-localize with the pericentromeric heterochromatin domains where Smc6 is located. Considering the repetitive nature of these domains and that Smc6 has been previously shown to prevent recombination in repetitive sequences, we hypothesize that Smc6 has a role in the prevention of aberrant recombination events between pericentromeric regions during the first meiotic prophase that would otherwise cause chromosomal aberrations leading to apoptosis, meiotic arrest or aneuploidies.  相似文献   

5.
We have analysed the role of RBR (retinoblastoma related), the Arabidopsis homologue of the tumour suppressor Retinoblastoma protein (pRb), during meiosis. We characterise the rbr-2 mutation, which causes a loss of RBR in male meiocytes. The rbr-2 plants exhibit strongly reduced fertility, while vegetative growth is generally unaffected. The reduced fertility is due to a meiotic defect that results in reduced chiasma formation and subsequent errors in chromosome disjunction. Immunolocalisation studies in wild-type meiocytes reveal that RBR is recruited as foci to the chromosomes during early prophase I in a DNA double-strand-break-dependent manner. In the absence of RBR, expression of several meiotic genes is reduced. The localisation of the recombinases AtRAD51 and AtDMC1 is normal. However, localisation of the MutS homologue AtMSH4 is compromised. Additionally, polymerisation of the synaptonemal complex protein AtZYP1 is abnormal. Together, these data indicate that loss of RBR during meiosis results in a reduction of crossover formation and an associated failure in chromosome synapsis. Our results indicate that RBR has an important role in meiosis affecting different aspects of this complex process.  相似文献   

6.
Conjugating Tetrahymena were irradiated by ultraviolet-B (UV-B) at various stages of conjugation. When the conjugants were exposed to the UV-B at late meiotic prophase (the stage from pachytene to diplotene), abortive conjugation was induced at high frequencies. After completing meiosis, a significant number of the conjugants showed marked anomalies, i.e., failure of nuclear selection after meiosis, and abortion of the subsequent conjugation process such as a postmeiotic division to form gametic nuclei, nuclear exchange, synkaryon formation, and postzygotic development. The conjugating pairs retained the parental macronucleus and separated earlier as compared with a control. The resultant exconjugants degenerated meiotic products and became amicronucleates. These observations strongly suggest the presence of a UV-sensitive molecule that is expressed specifically at the meiotic prophase and that directs the subsequent development after meiosis. Dev. Genet. 23:151–157, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Female meiotic drive is the phenomenon where a selfish genetic element alters chromosome segregation during female meiosis to segregate to the egg and transmit to the next generation more frequently than Mendelian expectation. While several examples of female meiotic drive have been known for many decades, a molecular understanding of the underlying mechanisms has been elusive. Recent advances in this area in several model species prompts a comparative re-examination of these drive systems. In this review, we compare female meiotic drive of several animal and plant species, highlighting pertinent similarities.  相似文献   

8.
The effect of follicular cells and their conditioned media on the FSH-induced oocyte maturation of oocytes surrounded by cumulus cells connected to the membrana granulosa (COCGs) was investigated. COCGs and cumulus oocyte complexes (COCs) were cultured for 22 hr in M199 supplemented with 0.05 IU FSH/ml in either the presence of pieces of theca cell layer or in the presence of pieces of membrana granulosa. COCGs and COCs were also cultured for 22 hr in either theca-cell conditioned medium (CMt) or in granulosa cell conditioned medium (CMg), both supplemented with 0.05 IU FSH/ml. To investigate the importance of cell–cell contacts between granulosa cells and cumulus cells, oocytes were cultured as COCs in CMt, as COCs in CMt supplemented with pieces of membrana granulosa, or as COCGs in CMt. In all groups the medium was supplemented with 0.05 IU FSH/ml. After culture the nuclear status of the oocytes was assessed using orcein staining. Culture of COCGs in the presence of theca cells as well as in CMt resulted in a significantly decreased proportion of oocytes that had undergone germinal vesicle breakdown (GVBD) at the end of the culture period as compared to the control. Of the oocytes that resumed meiosis in the presence of theca cells or in CMt, the proportion of oocytes that progressed up to the MII stage was significantly reduced. This indicates the production of a meiosis-inhibiting factor by theca cells. Culture with COCs instead of COCGs resulted in comparable results although the effect was less pronounced. The significant effect on the progression of meiosis of oocytes cultured as COCGs or as COCs, obtained in the presence of granulosa cells or in CMg, was much weaker than the effect of theca cells or culture in CMt. Culture of COCs in CMt supplemented with layers of membrana granulosa and 0.05 IU FSH/ml, resulted in significantly less oocytes that resumed meiosis as compared to culture of COCs in CMt. Of the oocytes that showed GVBD, the proportion that progressed up to the MII stage was significantly reduced. Attachment of the COCs to the membrana granulosa enhanced this inhibiting action of CMt on the progression of meiosis. It is concluded that theca cells secrete a stable factor that inhibits the progression of FSH-mediated meiosis in oocytes of COCGs. Mol. Reprod. Dev. 51:315–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Genomic conflicts arise when an allele gains an evolutionary advantage at a cost to organismal fitness. Oögenesis is inherently susceptible to such conflicts because alleles compete for inclusion into the egg. Alleles that distort meiosis in their favor (i.e., meiotic drivers) often decrease organismal fitness, and therefore indirectly favor the evolution of mechanisms to suppress meiotic drive. In this light, many facets of oögenesis and gametogenesis have been interpreted as mechanisms of protection against genomic outlaws. That females of many animal species do not complete meiosis until after fertilization, appears to run counter to this interpretation, because this delay provides an opportunity for sperm‐acting alleles to meddle with the outcome of female meiosis and help like alleles drive in heterozygous females. Contrary to this perceived danger, the population genetic theory presented herein suggests that, in fact, sperm nearly always evolve to increase the fairness of female meiosis in the face of genomic conflicts. These results are consistent with the apparent sperm dependence of the best characterized female meiotic driversin animals. Rather than providing an opportunity for sperm collaboration in female meiotic drive, the “fertilization requirement” indirectly protects females from meiotic drivers by providing sperm an opportunity to suppress drive.  相似文献   

10.
In several species of starfish, it has been reported that the meiotic divisions in fertilized oocytes occur precociously compared to those in unfertilized oocytes. The nature of the 'acceleration' of meiosis was studied using Pisaster ochraceus oocytes. The extent of the acceleration of first polar body formation was found to be completely dependent on the time of fertilization (or artificial activation); fertilization at about 100 min after 1–methyladenine application accelerated meiosis I the most, while earlier or later fertilization resulted in a smaller extent of accelerations of meiosis I. Observation of isolated meiotic spindles and fluorescent visualization of meiotic spindles in whole oocytes showed that progression of meiosis I in Pisaster oocytes pauses transiently at metaphase I for more than 40min unless they are activated. The activation shortened the duration of metaphase I, which resulted in the acceleration of first polar body formation. A new term 'metaphase pause' is proposed to define this long duration of metaphase I in starfish oocytes.  相似文献   

11.
Meiosis activating sterol, produced directly by lanosterol 14-α-demethylase (CYP51) during cholesterol biosynthesis, has been shown to promote the initiation of oocyte meiosis. However, the physiological significance of CYP51 action on oocyte meiosis in response to gonadotrophins’ induction remained to be further explored. Herein, we analyzed the role of CYP51 in gonadotrophin-induced in vitro oocyte maturation via RNA interference (RNAi). We showed that although both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) significantly induced meiotic resumption in follicle-enclosed oocytes (FEOs), the effect of LH on oocyte meiosis resumption in FEOs was weaker than FSH. Moreover, both FSH and LH were able to upregulate CYP51 expression in cultured follicular granulosa cells when examined at 8 h or 12 h posttreatments, respectively. Interestingly, whereas knockdown of CYP51 expression via small interference RNA (siRNA) moderately blocked (23% reduction at 24 h) FSH-induced oocyte maturation [43% germinal vesicle breakdown (GVBD) rate in RNAi vs. 66% in control, P < 0.05] in FEOs, similar treatments showed no apparent effects on LH-induced FEO meiotic maturation (58% GVBD rate in RNAi vs. 63% in control, P > 0.05). Moreover, the results in a cumulus-enclosed oocytes (CEOs) model showed that approximately 30% of FSH-induced CEOs’ meiotic resumption was blocked upon CYP51 knockdown by siRNAs. These findings suggest that FSH, partially at least, employs CYP51, and therefore the MAS pathway, to initiate oocyte meiosis.  相似文献   

12.
13.
Pulsed-field gel electrophoresis (PFGE) has been used to study the timing, frequency, and distribution of double-strand breaks (DSBs) in chromosomal-sized DNA during meiosis in yeast. It has previously been shown that DSBs are associated with some genetic hotspots during recombination, and it is important to know whether meiotic recombination events routinely initiate via DSBs. Two strains have been studied here—a highsporulating homothallic wild type and a congenic mutant strain carrying a rad50S mutation. This mutant has previously been reported to accumulate broken molecules in meiosis to much higher frequencies than wild type and to abolish the characteristic wild-type processing of DNA that has been observed at the break sites. When whole chromosomes are resolved by PFGE, both strains show some broken molecules starting at the time that cells commit to genetic recombination. Breakage has been assessed primarily on Chromosome III and Chr. XV, using Southern hybridization to identify these chromosomes and their fragments. At any one time, break frequency in wild type is much lower than the cumulative frequency of recombination events that occur during meiosis. However, there is suggestive evidence that each break is short-lived, and it is therefore difficult to estimate the total number of breaks that may occur. In rad50S, chromosome breaks accumulate to much higher levels, which are probably broadly consistent with the estimated number of recombination events in wild type. However, since rad50S is substantially defective in completing recombination, it is not known for certain if it initiates events at wild-type frequencies. A surprising feature of the data is that a strong banding pattern is observed in the fragment distribution from broken chromosomes in both strains, implying that at least much of the breakage occurs at specific sites or within short regions. However, with the exception of the rDNA region on Chr. XII, assessment of the genetic map indicates that recombination can occur almost anywhere in the genome, although some regions are much hotter than others. Possible reasons for this apparent paradox are discussed. It may in part result from breakage levels too low for adequate detection in cold regions but may also imply that recombination events are localized more than previously realized. Alternatively, there may be a more indirect relationship between break sites and the associated recombination events. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Similar to how the model of centromere drive explains the size and complexity of centromeres in monocentrics (organisms with localized centromeres), our model of holokinetic drive is consistent with the divergent evolution of chromosomal size and number in holocentrics (organisms with nonlocalized centromeres) exhibiting holokinetic meiosis (holokinetics). Holokinetic drive is proposed to facilitate chromosomal fission and/or repetitive DNA removal (or any segmental deletion) when smaller homologous chromosomes are preferentially inherited or chromosomal fusion and/or repetitive DNA proliferation (or any segmental duplication) when larger homologs are preferred. The hypothesis of holokinetic drive is supported primarily by the negative correlation between chromosome number and genome size that is documented in holokinetic lineages. The supporting value of two older cross‐experiments on holokinetic structural heterozygotes (the rush Luzula elegans and butterflies of the genus Antheraea) that indicate the presence of size‐preferential homolog transmission via female meiosis for holokinetic drive is discussed, along with the further potential consequences of holokinetic drive in comparison with centromere drive.  相似文献   

15.
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.  相似文献   

16.
17.
18.
Marc Rehmsmeier 《Genetics》2013,193(4):1083-1094
Mathematical models of meiosis that relate offspring to parental genotypes through parameters such as meiotic recombination frequency have been difficult to develop for polyploids. Existing models have limitations with respect to their analytic potential, their compatibility with insights into mechanistic aspects of meiosis, and their treatment of model parameters in terms of parameter dependencies. In this article I put forward a computational approach to the probabilistic modeling of meiosis. A computer program enumerates all possible paths through the phases of replication, pairing, recombination, and segregation, while keeping track of the probabilities of the paths according to the various parameters involved. Probabilities for classes of genotypes or phenotypes are added, and the resulting formulas are simplified by the symbolic-computation system Mathematica. An example application to autotetraploids results in a model that remedies the limitations of previous models mentioned above. In addition to the immediate implications, the computational approach presented here can be expected to be useful through opening avenues for modeling a host of processes, including meiosis in higher-order ploidies.  相似文献   

19.
Oocytes were removed from the follicles of rats at 15 to 31 days of age, and their ability to resume meiosis (“meiotic competence”) in vitro was correlated with their diameter and the stage of follicular development. The majority of oocytes explanted on day 15 did not resume meiosis when placed in culture, but the percentage of competent oocytes increased from 14.1% ± 3.0% on day 20 to 67.6% ± 3.3% on day 26 of age. This ability to resume maturation correlated well (r = 0.98) with the increase in diameter of oocytes and coincided with the development of antral follicles. Hypophysectomy on day 15 of age, but not on day 20, reduced the percentage (P < 0.001) and number (P < 0.001) of competent oocytes and was accompanied by a reduction in diameter of oocytes. Treatment with PMSG or E2 increased the number (P < 0.001) and percentage (P < 0.001) of competent oocytes. These results suggest that the ability of oocytes to mature in vitro is dependent upon stimulation by gonadotropins and that this action of gonadotropin may be mediated by production of estrogen within the follicles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号