共查询到20条相似文献,搜索用时 0 毫秒
1.
The sterol content of germinating conidia of the opportunistic pathogenic fungus Aspergillus fumigatus has been correlated with germination phase and sensitivity to polyene antibiotics. The sterol and sterol ester contents of walls did not change during germination. The sterol ester content of membranes and cell sap remained constant during germination, whereas the sterol content increased during the outgrowth of germ tubes. On the basis of differential extraction studies it was concluded that the loss of resistance to polyenes that occurred in the early stages of swelling of conidia during germination was not due to a movement of sterol or sterol ester out of the wall. Radioactive-labelling experiments demonstrated that, although the amounts of conidial wall sterol and sterol ester did not change during germination, they were metabolically active. Changes in the turnover rate of wall and membrane sterol and sterol ester during germination were investigated and their relationship to a possible mechanism for the change from resistance to sensitivity to polyene antibiotics is discussed. 相似文献
2.
During the past 15 years the saprophytic fungus Aspergillus fumigatus has become the most prevalent airborne fungal pathogen, causing severe and often fatal infections especially in immuno-compromised patients. Germination of inhaled conidia is an early and crucial event in the infection process of A. fumigatus. In this study we have analyzed morphological changes that take place during this differentiation process using scanning electron microscopy. Our data show that (i) the hydrophobic surface layer of resting conidia seems to be shed before the cells start to swell and (ii) that filamentous surface appendages are expressed at a very early phase of the germtube formation. These surface structures were only found on the first few microm of the germtube, but were absent from the surface of mycelial hyphae and resting or swollen conidia. The highly regulated expression of these novel surface organelles suggests that they may play an important role during early germination and represent a potential target for future anti-A. fumigatus therapies. 相似文献
3.
Aspergilli are among the most abundant fungi worldwide. They degrade organic material and can be pathogens of plants and animals. Aspergilli spread by forming high numbers of conidia. Germination of these stress resistant asexual spores is characterized by a swelling and a germ tube stage. Here, we show that conidia of Aspergillus niger, Aspergillus oryzae, Aspergillus clavatus, Aspergillus nidulans and Aspergillus terreus show different swelling and germ tube formation dynamics in pure water or in water supplemented with (in)organic nutrients. Apart from inter-species heterogeneity, intra-species heterogeneity was observed within spore populations of the aspergilli except for A. terreus. Sub-populations of conidia differing in size and/or contrast showed different swelling and germ tube formation dynamics. Together, data imply that aspergilli differ in their competitive potential depending on the substrate. Moreover, results suggest that intra-species heterogeneity provides a bet hedging mechanism to optimize survival of aspergilli. 相似文献
4.
We used real-time atomic force microscopy with a temperature-controlled stage (37°C) to probe the structural and physicochemical dynamics of single Aspergillus fumigatus conidia during germination. Nanoscale topographic images of dormant spores revealed the presence of a layer of rodlets made of hydrophobins, in agreement with earlier electron microscopy observations. Within the 3-h germination period, progressive disruption of the rodlet layer was observed, revealing hydrophilic inner cell wall structures. Using adhesion force mapping with hydrophobic tips, these ultrastructural changes were shown to correlate with major differences in cell surface hydrophobicity. That is, the rodlet surface was uniformly hydrophobic due to the presence of hydrophobins, whereas the cell wall material appearing upon germination was purely hydrophilic. This study illustrates the potential of real-time atomic force microscopy imaging and force spectroscopy for tracking cell-surface dynamics. 相似文献
5.
Inhaled conidia of Aspergillus fumigatus germinated in the lungs of mice at a low rate but both germinated and ungerminated spores were cleared. Spores germinated at a high rate in the lungs of cortisone-treated mice. 相似文献
6.
1. The activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and ornithine-2-oxoglutarate aminotransferase were studied during the first 24 h of conidial germination in Aspergillus nidulans. 2. Increases (over 100-fold) in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase occurred during the emergence of the germ-tube and before the doubling of DNA and this was followed by a sharp fall in the activities of both enzymes by 16h. 3. The increase in ornithine decarboxylase could be largely suppressed if 0.6 mM-putrescine was added to the growth medium. 4. Low concentrations of cycloheximide, which delayed germination by 2h, caused a corresponding delay in the changes in ornithine decarboxylase activity. 5. Ornithine-2-oxoglutarate aminotransferase activity increased steadily during the first 24h of germination. 6. Ornithine or arginine in the growth medium induced higher activity of ornithine-2-oxoglutarate aminotransferase, but did not affect ornithine decarboxylase activity. 7. The significance of these enzyme changes during germination is discussed. 相似文献
7.
Aspergillus fumigatus is an opportunistic fungal pathogen responsible for severe, life-threatening infections in immunocompromised patients. Airborne conidia are the infectious agent and can reach the lower parts of the respiratory system. In the lung, phagocytes represent the first line of defence. Resident macrophages are able to track down, engulf and kill the invading spores. Phagocytosis of the conidia is therefore a prerequisite for their efficient elimination. Using human and murine macrophages we analysed the phagocytic uptake of A. fumigatus conidia. We found that conidial phagocytosis is an actin-depending process that additionally requires myosin motor, phosphoinositide-3-phosphate kinase and tyrosine kinase activity. Both broad range tyrosine kinase inhibitors and inhibitors that specifically block src kinases had a strong impact on the conidial uptake. Immunofluorescence data demonstrate the recruitment of tyrosine-phosphorylated proteins to the vicinity of engulfed conidia. Uptake of the conidia was accompanied by a strong and local reorganisation of the actin cytoskeleton, whereas no prominent reorganisation was apparent for the microtubules. Both confocal immunofluorescence and electron microscopic data revealed the presence of large ruffle-like structures engaged in the uptake of conidia. This suggests that the internalisation of A. fumigatus spores can be mediated by a process resembling macropinocytosis, which is furthermore supported by the detection of intracellular conidia within spacious vacuoles. Taken together, our data provide new insights into the internalisation of A. fumigatus spores by macrophages, a key process in the early immune defence against an Aspergillus infection. 相似文献
9.
Data on the lipid composition and carbohydrate composition of Aspergillus niger conidia make it possible to characterize the individual germination stages and differentiate between the conidia capable of germination and those that lost the germination capacity. The following criteria are proposed: the ratio of phosphatidylcholine and phosphatidylethanolamine, the ratio of mannitol and arabitol, and the levels of sterols and free fatty acids. The role of these compounds in the biochemical background of cell transition from dormancy to active metabolism and their use as indices of the quality of inocula in biotechnological processes are discussed. 相似文献
10.
Aspergillus niger reproduces asexually by forming conidia. Here, the minimal nutrient requirements were studied that activate germination of A. niger conidia. To this end, germination was monitored in time using an oCelloScope imager. Data was used as input in an asymmetric model to describe the process of swelling and germ tube formation. The maximum number of spores (P max) that were activated to swell and to form germ tubes was 32.54% and 20.51%, respectively, in minimal medium with 50 mM glucose. In contrast, P max of swelling and germ tube formation was <1% in water or 50 mM glucose. Combining 50 mM glucose with either NaNO 3, KH 2PO4, or MgSO4 increased P max of swelling and germination up to 15.25% and 5.4%, respectively, while combining glucose with two of these inorganic components further increased these P max values up to 25.85% and 10.99%. Next, 10 mM amino acid was combined with a phosphate buffer and MgSO 4. High (e.g. proline), intermediate and low (e.g. cysteine) inducing amino acids were distinguished. Together, a combination of an inducing carbon source with either inorganic phosphate, inorganic nitrogen or magnesium sulphate is the minimum requirement for A. niger conidia to germinate. 相似文献
11.
Methylcitrate synthase is a key enzyme of the methylcitrate cycle and required for fungal propionate degradation. Propionate not only serves as a carbon source, but also acts as a food preservative (E280-283) and possesses a negative effect on polyketide synthesis. To investigate propionate metabolism from the opportunistic human pathogenic fungus Aspergillus fumigatus, methylcitrate synthase was purified to homogeneity and characterized. The purified enzyme displayed both, citrate and methylcitrate synthase activity and showed similar characteristics to the corresponding enzyme from Aspergillus nidulans. The coding region of the A. fumigatus enzyme was identified and a deletion strain was constructed for phenotypic analysis. The deletion resulted in an inability to grow on propionate as the sole carbon source. A strong reduction of growth rate and spore colour formation on media containing both, glucose and propionate was observed, which was coincident with an accumulation of propionyl-CoA. Similarly, the use of valine, isoleucine and methionine as nitrogen sources, which yield propionyl-CoA upon degradation, inhibited growth and polyketide production. These effects are due to a direct inhibition of the pyruvate dehydrogenase complex and blockage of polyketide synthesis by propionyl-CoA. The surface of conidia was studied by electron scanning microscopy and revealed a correlation between spore colour and ornamentation of the conidial surface. In addition, a methylcitrate synthase deletion led to an attenuation of virulence, when tested in an insect infection model and attenuation was even more pronounced, when whitish conidia from glucose/propionate medium were applied. Therefore, an impact of methylcitrate synthase in the infection process is discussed. 相似文献
16.
The effect of nitric oxide (NO) donors on survival of conidia, germination and growth of the opportunistic pathogenic fungus Aspergillus fumigatus was investigated. Most efficient was sodium nitrite in an acidic milieu, (pH 4.5). At a concentration of 5 mmol/L it killed
all resting conidia in buffer within 16 h. S-Nitroso derivatives of thiols (cysteine, N-acetylcysteine and N-acetylpenicillamine)
at the same concentration killed about 30–50% of spores within 24 h. The NO scavenger, oxyhemoglobin, abolished these effects.
S-Nitrosoglutathione had no fungicidal effect and promoted germination. Sodium nitrite and S-nitroso-N-acetylcysteine inhibited
germination of conidia in various media from concentration of 0.5 mmol/L and stopped it at concentrations of 1.4–2.9 mmol/L.
In media with glucose and casein hydrolyzate or sodium nitrate as nitrogen source, growth inhibition by sodium nitrite (0.5–2
mmol/L) was only weak and mostly transient. In general, the used strain A. fumigatus seems to be less sensitive to nitric oxide donors than dimorphic pathogenic fungi. Thus, nitric oxide is probably not a major
effector molecule in killing phagocytized elements of this fungus by host's immunocytes. 相似文献
17.
BackgroundAspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores. MethodsUsing BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G + neutrophils and MHC II + antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways. ResultsAllergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24 hours post-conidia application. ConclusionsAspiration of allergen to sensitized mice enhanced the ingestion potential of conducting airway neutrophils. Such activation primes neutrophils so that they are sufficient to control dissemination of non-germinating A. fumigatus conidia. At the same time, it can be a reason for the development of sensitivity to fungi and subsequent asthma exacerbation. 相似文献
19.
Pulmonary exposure to Aspergillus fumigatus has been associated with morbidity and mortality, particularly in immunocompromised individuals. A. fumigatus conidia produce β-glucan, proteases, and other immunostimulatory factors upon germination. Murine models have shown that the ability of A. fumigatus to germinate at physiological temperature may be an important factor that facilitates invasive disease. We observed a significant increase in IFN-γ-producing CD8(+) T cells in bronchoalveolar lavage fluid (BALF) of immunocompetent mice that repeatedly aspirated A. fumigatus conidia in contrast to mice challenged with A. versicolor, a species that is not typically associated with invasive, disseminated disease. Analysis of tissue sections indicated the presence of germinating spores in the lungs of mice challenged with A. fumigatus, but not A. versicolor. Airway IFN-γ(+)CD8(+) T-cells were decreased and lung germination was eliminated in mice that aspirated A. fumigatus conidia that were formaldehyde-fixed or heat-inactivated. Furthermore, A. fumigatus particles exhibited greater persistence in the lungs of recipient mice when compared to non-viable A. fumigatus or A. versicolor, and this correlated with increased maintenance of airway memory-phenotype CD8(+) T cells. Therefore, murine airway CD8(+) T cell-responses to aspiration of Aspergillus conidia may be mediated in part by the ability of conidia to germinate in the host lung tissue. These results provide further evidence of induction of immune responses to fungi based on their ability to invade host tissue. 相似文献
20.
Mutants of thermotolerant fungus Aspergillus fumigatus I-21 (ATCC 32722) unable to grow at 37 degrees C were sought. Cold-sensitive mutants were enriched from progeny spores of gamma-irradiated conidia by two or more incubations at various nonpermissive temperatures alternating with filtrations through chessecloth. The approximate minimum, optimum, and maximum growth temperatures of the parent were 12, 40, and 50 degrees C, respectively. Mutants unable to grow at 37 degrees C were not successfully isolated directly from the wild type. A mutant unable to grow at 25 degrees C was isolated and mutations further increasing the cold sensitivity by increments of 3-5 degrees C were found to occur. Mutants completely unable to grow at 37 degrees C were obtained by five sequential mutations. All mutants grew as fast as the wild-type parent at 45 degrees C and higher. Each mutant produced revertants able to grow not only at the nonpermissive temperature used for its isolation but also at lower temperatures. 相似文献
|