首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spitz class genes, pointed (pnt), rhomboid frho), single-minded (sim), spitz (spi)and Star (S), as well as the Drosophila epidermal growth factor receptor (Egfr) signaling genes, argos (aos), Egfr, orthodenticle (otd) and vein (vn), are required for the proper establishment of ventral neuroectodermal cell fate. The roles of the CNS midline cells, spitz class and Egfr signaling genes in cell fate determination of the ventral neuroectoderm were determined by analyzing the spatial and temporal expression patterns of each individual gene in spitz class and Egfr signaling mutants. This analysis showed that the expression of all the spitz class and Egfrsignaling genes is affected by the sim gene, which indicates that sim acts upstream of all the spitz class and Egfr signaling genes. It was shown that overexpression of sim in midline cells fails to induce the ectodermal fate in the spi and Egfr mutants. On the other hand, overexpression of spi and Draf causes ectopic expression of the neuroectodermal markers in the sim mutant. Ectopic expression of sim in the en-positive cells induces the expression of downstream genes such as otd, pnt, rho, and vn, which clearly demonstrates that the sim gene activates the EGFR signaling pathway and that CNS midline cells, specified by sim, provide sufficient positional information for the establishment of ventral neuroectodermal fate. These results reveal that the CNS midline cells are one of the key regulators for the proper patterning of the ventral neuroectoderm by controlling EGFR activity through the regulation of the expression of spitz class genes and Egfr signaling genes.  相似文献   

2.
The Drosophila embryonic central nervous system (CNS) develops from sets of neuroblasts (NBs) which segregate from the ventral neuroectoderm during early embryogenesis. It is not well established how each individual NB in the neuroectoderm acquires its characteristic identity along the dorsal-ventral axis. Since it is known that CNS midline cells and spitz class genes (pointed, rhomboid, single-minded, spitz and Star) are required for the proper patterning of ventral CNS and epidermis originated from the ventral neuroectoderm, this study was carried out to determine the functional roles of the CNS midline cells and spitz class genes in the fate determination of ventral NBs and formation of mature neurons and their axon pathways. Several molecular markers for the identified NBs, neurons, and axon pathways were employed to examine marker gene expression profile, cell lineage and axon pathway formation in the spitz class mutants. This analysis showed that the CNS midline cells specified by single-minded gene as well as spitz class genes are required for identity determination of a subset of ventral NBs and for formation of mature neurons and their axon pathways. This study suggests that the CNS midline cells and spitz class genes are necessary for proper patterning of the ventral neuroectoderm along the dorsal-ventral axis.  相似文献   

3.
Drosophilaembryos deficient for programmed cell death produce 9 midline glia (MG) in addition to the wild-type complement of 3.2 MG/segment. More than 3 of the supernumerary MG derive from the MGP (MG posterior) lineage and the remainder from the MGA/MGM (MG anterior and middle) lineage. There is one unidentified additional neuron in the mesectoderm of embryos deficient for apoptosis. The supernumerary MG are not diverted from other lineages nor do they arise from an altered pattern of mitosis. Instead, these MG appear to arise from a normally existing pool of 12 precursor cells, larger than anticipated by earlier studies. During normal development, MG survival is dependent upon signaling to theDrosophilaEGF receptor. The persistence of supernumerary MG in embryos deficient for apoptosis does not alter the spatial pattern ofDrosophilaEGF receptor signaling. The number and position of MG which express genes dependent upon EGF receptor function, such aspointedorargos,are indistinguishable from wild type. Genes of the spitz group are required forDrosophilaEGF receptor function. Surviving MG in spitz group/H99double mutants continue to express genes characteristic of the MG, but the cells fail to differentiate into ensheathing glia and are displaced from the nerve cord.  相似文献   

4.
The spitz class and Egfr signaling (spi/Egfr) genes are required for the proper establishment of cell fate in the Drosophila ventral neuroectoderm. We investigated the role of the central nervous system (CNS) midline cells, and the hierarchical relationship among the spi/Egfr genes, in this process by analyzing the spatial and temporal expression of several of the genes in selected spi/Egfr mutants. Our analysis showed that expression of all the spi/Egfr genes is severely reduced in the single-minded (sim) mutant, and ectopically induced in en-Gal4/UAS-sim embryos. This result indicates that sim acts upstream of all the other spi/Egfr genes. The CNS midline cells regulate rhomboid (rho) expression in the ventral neuroectoderm and activate the EGFR signaling pathway. We also found that argos (aos) and orthodenticle (otd) act downstream of pointed (pnt), and that aos represses expression of otd in the lateral neuroectoderm to establish differential cell fates in the ventral neuroectoderm. Our findings suggest the following hierarchical relationship among the spi/Egfr genes: [see text].  相似文献   

5.
A homeobox gene, defective proventriculus (dve), is expressed in various tissues including the ventral ectoderm and midgut. Here, we show the expression pattern of dve in the ventral ectoderm, in which dve expression is induced by Spitz, a ligand for Drosophila epidermal growth factor receptor (EGFR). In spitz mutants, dve expression is only lost in the ventral ectoderm and overexpression of Spitz induces ectopic dve activation in the ventral ectoderm. Dve expression in the middle midgut depends on Decapentaplegic (Dpp) signaling, while expression of a dominant-negative form of Drosophila EGFR (DER(DN)) also causes a marked decrease in dve expression in the middle midgut. Furthermore, heterozygous mutation of thick veins (tkv), a Dpp receptor, strongly enhances the effect of DER(DN). These results indicate that EGFR signaling is crucial for dve expression in the ventral ectoderm and is required in the middle midgut where it cooperates with Dpp signaling.  相似文献   

6.
Rhomboid (Rho), a cell surface, seven-transmembrane domain protein, participates in Spitz-dependent activation of the Drosophila EGF receptor (EGFR). By contrast to transient expression in other embryonic tissues, rho is expressed continuously in the embryonic and larval Midline Glia (MG) lineage and is required upstream of, or in parallel with, S, Spi, and EGFR to establish MG cell number. EGFR signaling is necessary for the expression of rho in the MG and sufficient to stimulate rho expression in additional MG progenitors. rho expression is required continuously from embryonic stage 9-17 to suppress apoptosis in the MG. Although rho misexpression can increase MG number through a non-cell autonomous mechanism, the pattern of normal rho expression suggests that it functions by enhancing autocrine or paracrine signaling among MG cells.  相似文献   

7.
The presentation of secreted axon guidance factors plays a major role in shaping central nervous system (CNS) connectivity. Recent work suggests that heparan sulfate (HS) regulates guidance factor activity; however, the in vivo axon guidance roles of its carrier proteins (heparan sulfate proteoglycans, or HSPGs) are largely unknown. Here we demonstrate through genetic analysis in vivo that the HSPG Syndecan (Sdc) is critical for the fidelity of Slit repellent signaling at the midline of the Drosophila CNS, consistent with the localization of Sdc to CNS axons. sdc mutants exhibit consistent defects in midline axon guidance, plus potent and specific genetic interactions supporting a model in which HSPGs improve the efficiency of Slit localization and/or signaling. To test this hypothesis, we show that Slit distribution is altered in sdc mutants and that Slit and its receptor bind to Sdc. However, when we compare the function of the transmembrane Sdc to a different class of HSPG that localizes to CNS axons (Dallylike), we find functional redundancy, suggesting that these proteoglycans act as spatially specific carriers of common HS structures that enable growth cones to interact with and perceive Slit as it diffuses away from its source at the CNS midline.  相似文献   

8.
The glia that reside at the midline of the Drosophila CNS are an important embryonic signaling center and also wrap the axons that cross the CNS. The development of the midline glia (MG) is characterized by migration, ensheathment, subdivision of axon commissures, apoptosis, and the extension of glial processes. All of these events are characterized by cell-cell contact between MG and adjacent neurons. Cell adhesion and signaling proteins that mediate different aspects of MG development and MG–neuron interactions have been identified. This provides a foundation for ultimately obtaining an integrated picture of how the MG assemble into a characteristic axonal support structure in the CNS.  相似文献   

9.
Patterning of the Drosophila ventral epidermis is a tractable model for understanding the role of signalling pathways in development. Interplay between Wingless and EGFR signalling determines the segmentally repeated pattern of alternating denticle belts and smooth cuticle: spitz group genes, which encode factors that stimulate EGFR signalling, induce the denticle fate, while Wingless signalling antagonizes the effect of EGFR signalling, allowing cells to adopt the smooth-cuticle fate. Medial fusion of denticle belts is also a hallmark of spitz group genes, yet its underlying cause is unknown. We have studied this phenotype and discovered a new function for EGFR signalling in epidermal patterning. Smooth-cuticle cells, which are receiving Wingless signalling, are nevertheless dependent on EGFR signalling for survival. Reducing EGFR signalling results in apoptosis of smooth-cuticle cells between stages 12 and 14, bringing adjacent denticle regions together to result in denticle belt fusions by stage 15. Multiple factors stimulate EGFR signalling to promote smooth-cuticle cell survival: in addition to the spitz group genes, Rhomboid-3/roughoid, but not Rhomboid-2 or -4, and the neuregulin-like ligand Vein also function in survival signalling. Pointed mutants display the lowest frequency of fusions, suggesting that EGFR signalling may inhibit apoptosis primarily at the post-translational level. All ventral epidermal cells therefore require some level of EGFR signalling; high levels specify the denticle fate, while lower levels maintain smooth-cuticle cell survival. This strategy might guard against developmental errors, and may be conserved in mammalian epidermal patterning.  相似文献   

10.
Genes of the ventrolateral group in Drosophila are dedicated to developmental regulation of Egfr signaling in multiple processes including wing vein development. Among these genes, Egfr encodes the Drosophila EGF-Receptor, spitz (spi) and vein (vn) encode EGF-related ligands, and rhomboid (rho) and Star (S) encode membrane proteins. In this study, we show that rho-mediated hyperactivation of the EGFR/MAPK pathway is required for vein formation throughout late larval and early pupal development. Consistent with this observation, rho activity is necessary and sufficient to activate MAPK in vein primordium during late larval and early pupal stages. Epistasis studies using a dominant negative version of Egfr and a ligand-independent activated form of Egfr suggest that rho acts upstream of the receptor. We show that rho and S function in a common aspect of vein development since loss-of-function clones of rho or S result in nearly identical non-autonomous loss-of-vein phenotypes. Furthermore, mis-expression of rho and S in wild-type and mutant backgrounds reveals that these genes function in a synergistic and co-dependent manner. In contrast, spi does not play an essential role in the wing. These data indicate that rho and S act in concert, but independently of spi, to promote vein development through the EGFR/MAPK signaling pathway.  相似文献   

11.
The attractive Netrin receptor Frazzled (Fra), and the signaling molecules Abelson tyrosine kinase (Abl), the guanine nucleotide-exchange factor Trio, and the Abl substrate Enabled (Ena), all regulate axon pathfinding at the Drosophila embryonic CNS midline. We detect genetic and/or physical interactions between Fra and these effector molecules that suggest that they act in concert to guide axons across the midline. Mutations in Abl and trio dominantly enhance fra and Netrin mutant CNS phenotypes, and fra;Abl and fra;trio double mutants display a dramatic loss of axons in a majority of commissures. Conversely, heterozygosity for ena reduces the severity of the CNS phenotype in fra, Netrin and trio,Abl mutants. Consistent with an in vivo role for these molecules as effectors of Fra signaling, heterozygosity for Abl, trio or ena reduces the number of axons that inappropriately cross the midline in embryos expressing the chimeric Robo-Fra receptor. Fra interacts physically with Abl and Trio in GST-pulldown assays and in co-immunoprecipitation experiments. In addition, tyrosine phosphorylation of Trio and Fra is elevated in S2 cells when Abl levels are increased. Together, these data suggest that Abl, Trio, Ena and Fra are integrated into a complex signaling network that regulates axon guidance at the CNS midline.  相似文献   

12.
The Drosophila CNS midline glia (MG) are multifunctional cells that ensheath and provide trophic support to commissural axons, and direct embryonic development by employing a variety of signaling molecules. These glia consist of two functionally distinct populations: the anterior MG (AMG) and posterior MG (PMG). Only the AMG ensheath axon commissures, whereas the function of the non-ensheathing PMG is unknown. The Drosophila MG have proven to be an excellent system for studying glial proliferation, cell fate, apoptosis, and axon-glial interactions. However, insight into how AMG migrate and acquire their specific positions within the axon-glial scaffold has been lacking. In this paper, we use time-lapse imaging, single-cell analysis, and embryo staining to comprehensively describe the proliferation, migration, and apoptosis of the Drosophila MG. We identified 3 groups of MG that differed in the trajectories of their initial inward migration: AMG that migrate inward and to the anterior before undergoing apoptosis, AMG that migrate inward and to the posterior to ensheath commissural axons, and PMG that migrate inward and to the anterior to contact the commissural axons before undergoing apoptosis. In a second phase of their migration, the surviving AMG stereotypically migrated posteriorly to specific positions surrounding the commissures, and their final position was correlated with their location prior to migration. Most noteworthy are AMG that migrated between the commissures from a ventral to a dorsal position. Single-cell analysis indicated that individual AMG possessed wide-ranging and elaborate membrane extensions that partially ensheathed both commissures. These results provide a strong foundation for future genetic experiments to identify mutants affecting MG development, particularly in guidance cues that may direct migration. Drosophila MG are homologous in structure and function to the glial-like cells that populate the vertebrate CNS floorplate, and study of Drosophila MG will provide useful insights into floorplate development and function.  相似文献   

13.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

14.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

15.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

16.
Within an axon bundle, one or two are pioneering axons and the rest are follower axons. Pioneering axons are projected first and the follower axons are projected later but follow a pioneering axon(s) pathway. It is not clear whether the pioneering axons have a guidance role for follower axons. In this paper, we have investigated the role of Patched (Ptc) in regulating the guidance of medial tract, one of the longitudinal tracts in the nerve cord. In patched mutants the medial longitudinal tract fails to fasciculate on its own side along the nerve cord, instead it abnormally crosses the midline and fasciculates with the contralateral tract. Interestingly, the medial tracts cross the midline ignoring the axon-repellant Slit on the midline and Roundabout on growth cones. The medial tract is pioneered by neurons pCC and vMP2. Our results show that guidance defects of this tract are due to loss and mis-specification of vMP2, which results in the projection from pCC to either stall or project outward near the location of vMP2. Thus, both pioneering neurons are necessary for the proper guidance of pioneering and follower axons. We also show that the loss of Ptc activity in the neuroectoderm prior to the formation of S1 and S2 neuroblasts causes the majority of axon guidance defects. These results provide insight into how mis-specification and loss of neurons can non-autonomously contribute to defects in axon pathfinding.  相似文献   

17.
18.
The establishment of axon trajectories is ultimately determined by the integration of intracellular signaling pathways. Here, a genetic approach in Drosophila has demonstrated that both Calmodulin and Son of sevenless signaling pathways are used to regulate which axons cross the midline. A loss in either signaling pathway leads to abnormal projection of axons across the midline and these increase with roundabout or slit mutations. When both Calmodulin and Son of sevenless are disrupted, the midline crossing of axons mimics that seen in roundabout mutants, although Roundabout remains expressed on crossing axons. Calmodulin and Son of sevenless also regulate axon crossing in a commissureless mutant. These data suggest that Calmodulin and Son of sevenless signaling pathways function to interpret midline repulsive cues which prevent axons crossing the midline.  相似文献   

19.
The conserved Eph receptors and their Ephrin ligands regulate a number of developmental processes, including axon guidance. In contrast to the large vertebrate Eph/Ephrin family, Drosophila has a single Eph receptor and a single Ephrin ligand, both of which are expressed within the developing nervous system. Here, we show that Eph and Ephrin can act as a functional receptor-ligand pair in vivo. Surprisingly, and in contrast to previous results using RNA-interference techniques, embryos completely lacking Eph function show no obvious axon guidance defects. However, Eph/Ephrin signaling is required for proper development of the mushroom body. In wild type, mushroom body neurons bifurcate and extend distinct branches to different target areas. In Eph mutants, these neurons bifurcate normally, but in many cases the dorsal branch fails to project to its appropriate target area. Thus, Eph/Ephrin signaling acts to guide a subset of mushroom body branches to their correct synaptic targets.  相似文献   

20.
Activation of the Drosophila EGF-receptor (DER) is spatially and temporally controlled by the release of its various ligands. DER and its ligand Spitz mediate the formation of specific somatic muscle precursors. We show that a second DER ligand, Vein, complements the activity of Spitz in the development of various somatic muscle precursors. In vn mutant embryos, the DER-dependent muscle precursors do not form in some of the segments. This phenotype is significantly enhanced in embryos carrying only one copy of wild type spitz. Our analysis suggests that Vein activation of DER differs qualitatively from that of Spitz in that it does not lead to the expression of the inhibitory protein Argos, possibly leading to a continuous activation of the DER signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号