首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catecholic amino acids, dopa, 2-S- and 5-S-cysteinyldopa, and 2,5-S,S-dicysteinyldopa were determined qualitatively in serum from patients with malignant melanoma by reversed-phase high-performance liquid chromatography, using electrochemical detection. In urine the catecholamines dopamine, noradrenaline and adrenaline were also determined qualitatively, as well as the above-mentioned compounds, in a single chromatographic run. The conditions were optimized by changing the pH of the mobile phase and by the addition of methanesulphonic acid. A comparison was made between the performance of four commercial reversed-phase packing materials containing chemically bonded octadecyl groups, using a standard mixture of catecholic amino acids. The influence of ionic strength, pH and amount of methanesulphonic acid on retention was investigated.  相似文献   

2.
Kubec R  Kim S  Musah RA 《Phytochemistry》2002,61(6):675-680
Three cysteine derivatives, (R)-S-(2-hydroxyethyl)cysteine, together with (R(S)R(C))- and (S(S)R(C))-S-(2-hydroxyethyl)cysteine sulfoxides, have been isolated from the roots of Petiveria alliacea. Furthermore, three additional amino acids, S-methyl-, S-ethyl-, and S-propylcysteine derivatives, were detected. They were present only in trace amounts (<3 microg g(-1) fr. wt), precluding determination of their absolute configurations and oxidation states. In addition, four thiosulfinates, S-(2-hydroxyethyl) (2-hydroxyethane)-, S-(2-hydroxyethyl) phenylmethane-, S-benzyl (2-hydroxyethane)- and S-benzyl phenylmethanethiosulfinates, have been found in a homogenate of the roots. The formation pathways of various benzyl/phenyl-containing compounds previously found in the plant were also discussed.  相似文献   

3.
The tapetum lucidum of the alligator gar Lepisosteus was shown by t.l.c. to contain a new phenolic amino acid, which is apparently a major constituent of the reflecting material. It was isolated in a yield of 0.5 mg/eye and its physical and chemical characteristics, especially reductive hydrolysis with hydriodic acid giving dopa (3,4-dihydroxyphenylalanine) and cysteine, suggested that it might to SS-dicysteinyldopa. Tyrosinase oxidation of L-dopa in the presence of an excess of L-cysteine yielded, in addition to known 5- and 2-S-cysteinyldopa, the same amino acid as that isolated from the eye of the gar, thus confirming the gross structure. The position of the two cysteine residues was established by the fact that tyrosinase oxidation of catechol and cyteine gave 3-S-cysteinylcatechol and 3,6-SS-dicysteinylcatechol. The natural amino acid is therefore formulated as 3-(2,5-SS-dicysteinyl-3,4-dihydroxyphenyl)alanine (2,5-SS-dicysteinyldopa), which may be formed by two consecutive additions of cysteine, first to dopaquinone and then to 5-S-cysteinyldopaquinone. The enzymic synthesis of 2,5-SS-dicysteinyldopa in vitro suggests that it may also be involved in the biosynthesis of phaeomelanin.  相似文献   

4.
S Ito  T Kato  K Shinpo    K Fujita 《The Biochemical journal》1984,222(2):407-411
A simple and rapid method was developed for the determination of 3,4-dihydroxyphenylalanine (dopa) and 5-S-cysteinyl-3,4-dihydroxyphenylalanine (5-S-cysteinyldopa) in proteins with the use of high-pressure liquid chromatography. With this method, it is demonstrated that mushroom tyrosinase can catalyse hydroxylation of tyrosine residues in proteins to dopa and subsequent oxidation to dopaquinone residues. The dopaquinone residues in proteins combine with cysteine residues to form 5-S-cysteinyldopa in bovine serum albumin and yeast alcohol dehydrogenase, whereas dopa is the major product in bovine insulin, which lacks cysteine residues.  相似文献   

5.
Seventeen novel 2,5‐disubstituted benzimidazole derivatives were designed, synthesized and evaluated for their antibacterial activities. The tested compounds B1 – B4 and C2 – C6 exhibited not only good antifungal activity but also favorable broad‐spectrum antibacterial activity. Also, the lowest MIC of antibacterial and antifungal activity was 2 μg/mL and 4 μg/mL, respectively. It suggested that the structure of compound including the different substituent and its sites directly affected the efficacy of the synthesized compounds.  相似文献   

6.
Eumelanogenesis and phaeomelanogenesis diverge at an early stage in pigment formation, namely at the point where dopaquinone, the initial product of tyrosine oxidation by tyrosinase, undergoes one of two types of reaction: either (1) a reductive endocyclisation in which a Michael addition of the side-chain amino group takes place; or (2) a reductive addition of cysteine to give cysteinyldopa. In the former case, the product cyclodopa, is known rapidly to undergo a redox exchange reaction with dopaquinone to yield dopachrome, the precursor of the eumelanogenic pathway. In the second instance, cysteinyldopa is regarded as leading to the formation of benzothiazoles, which are characteristic of phaeomelanin. The precursor molecule of the phaeomelanic pathway is cysteinyldopaquinone. We have examined quantitatively the role of dopaquinone in the non-enzymatic oxidation of 5-S-cysteinyldopa using pulse radiolysis and have demonstrated that the redox exchange reaction between dopaquinone and 5-S-cysteinyldopa occurs spontaneously with a rate constant of 8.8 x 10(5) M(-1) sec(-1). This study has also enabled an improved estimate of < or = 4 x 10(7) M(-1) sec(-1) to be obtained for the rate constant of the reaction of dopaquinone with cyclodopa. Calculations utilising these figures and estimates of the rate constants for the other reactions in early melanogenesis, demonstrate that, whilst similar pathways are invoked, the phaeomelanic pathway predominates in the presence of cysteine, irrespective of the availability of dopaquinone and thus independently of the rate of tyrosinase-catalysed oxidation. This suggests that the balance between the formation of eumelanin and phaeomelanin is regulated principally by the availability of cysteine at the site of melanogenesis.  相似文献   

7.
l-DOPA Is a Substrate for Tyrosine Hydroxylase   总被引:2,自引:0,他引:2  
Abstract: In the presence of thiols, tyrosine hydroxylase (TH) oxidizes l -dihydroxyphenylalanine ( l -DOPA) with a specific activity of up to 140 nmol min−1 mg−1 at 37°C and pH 7.0, which is ∼12–50% of its TH activity under similar experimental conditions. Using assay conditions that are optimal for measuring TH activity, the specific DOPA oxidase activity of human TH is similar to that of mushroom tyrosinase, but the two enzymes are clearly different in terms of substrate specificities, cofactor dependencies, and selectivity with respect to the effects of metal chelators and other inhibitors. In the presence of an excess of dithiothreitol, 2-mercaptoethanol, cysteine, or reduced glutathione, the reaction products of the two enzymes are identical and have been identified tentatively as thioether derivatives of DOPA. Theoretically, the oxidation of l -DOPA by TH may contribute to the formation of neuromelanin (pheomelanin) in catecholaminergic neurons and in the metabolism of DOPA to reactive intermediates that can react with free thiol groups in cellular proteins. The DOPA oxidase activity of TH can lead to errors in the estimation of in vivo or in vitro TH activity, and currently used assay protocols may have to be modified to avoid interference from this activity.  相似文献   

8.
Indandiones were identified as a novel class of small molecule inhibitors of hepatitis C virus NS3 serine protease from high throughput screening. We further studied the structure activity relationships and the mechanisms of inhibition for this class of compounds. Our studies revealed two similar, yet different, mechanisms accounting for the apparent indandione inhibition of HCV NS3 protease. In one case, the apparent inhibition results from the chemical breakdown of the parent compound and the subsequent redox chemistry of the compound. Oxidation of the cysteine containing substrate A to a disulfide-linked dimer converts this substrate to a potent, slow-binding inhibitor with a K(i) value of 170 nM. The second class of indandiones appears to react directly with the substrate to form an S-phenyl disulfide adduct with the P1 cysteine. This modification converts the substrate to a slow-binding inhibitor with a K(i) value of 110 nM, a k(on) = 2370 M(-1) s(-1), and k(off) = 2.5 x 10(-4) s(-1). A stable analogue of this latter compound was synthesized that contained a CH(2)-S linkage instead of the S-S linkage. The CH(2)-S compound showed no inhibition at concentrations as high as 40 microM, which suggests an important role for the S-S linkage in the inhibitory mechanism. Cysteine 159, which lies near the active site of the HCV protease, was mutated to serine. The C159S mutant displayed wild-type catalytic activity and susceptibility to inhibition by the S-S linked inhibitor. This result argues against a mechanism involving disulfide exchange between the inhibitor and the sulfhydryl group of C159. The mechanism of inhibition for this S-S linked substrate based inhibitor is likely due to oxidation of cysteines involved in chelation of the structural zinc atom.  相似文献   

9.
1. A comparative study was made in man, rhesus monkey, rat and rabbit of the urinary excretion of 2-, 4- and 5-methoxy- and 2,4-, 2,5- and 4,5-dimethoxy-6-sulphanilamidopyrimidines given orally. 2. In the rabbit, 70-80% of the dose of each drug was excreted in 2 days, mainly as N(4)-acetyl derivatives, except 2,5-dimethoxy-6-sulphanilamidopyrimidine, which was mainly excreted unchanged. 3. In the rat, 50-70% of the dose of each drug was excreted in 2 days, except the 2-methoxy and 2,4-dimethoxy compounds, whose excretion was about 30%. The N(4)-acetyl derivatives accounted for 20-70% of the drugs excreted, except the 2,5-dimethoxy derivative, which was excreted unchanged. 4. In the rhesus monkey, some 40-60% of the dose of the 2-methoxy, 2,4-dimethoxy and 2,5-dimethoxy compounds was excreted in 2 days, but the 4-methoxy, 5-methoxy and 4,5-dimethoxy compounds were excreted at less than half this rate. The 4-methoxy, 5-methoxy and 4,5-dimethoxy compounds were highly acetylated (80-90%) whereas the 2-methoxy compound was poorly acetylated (17%) and the 2,5-dimethoxy compound hardly at all. The major metabolite of the 2,4-dimethoxy compound in the monkey was the N(1)-glucuronide. 5. In man, 30% of the dose of the 4-methoxy and 2,4-dimethoxy compounds was excreted in 24 hr., whereas the 4,5-dimethoxy compound (Fanasil) was very slowly excreted (12% in 2 days). The 4-methoxy compound was well acetylated (65%), but the 2,4- and 4,5-dimethoxy compounds were not (20-30%). The main metabolite of the 2,4-dimethoxy compound in man was the N(1)-glucuronide. 6. N(1)-Glucuronide formation occurred extensively only with the 2,4-dimethoxy compound and only in man and the rhesus monkey. It did not occur in the rabbit and only to a minor extent in the rat. 7. The 2,5-dimethoxy compound was not significantly acetylated in vivo in the rabbit, rat or monkey, but acetylation occurred in vitro in rabbit or monkey liver homogenates. 8. These findings are discussed.  相似文献   

10.
The inhibitory effects of glabridin, an isoflavan isolated from licorice (Glycyrrhiza glabra) root, and its derivatives on the oxidation of LDL induced by copper ions or mediated by macrophages were studied, in order to evaluate the contribution of the different parts of the isoflavan molecule to its antioxidant activity. The peak potential (E1/2) of the isoflavan derivatives, their radical scavenging capacity toward 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical and their ability to chelate heavy metals were also analyzed and compared to their inhibitory activity on LDL oxidation. In copper ion-induced LDL oxidation, glabridin (1), 4′-O-methylglabridin (2), hispaglabridin A (3), and hispaglabridin B (4), which have two hydroxyl groups at positions 2′ and 4′ or one hydroxyl at position 2′ on ring B, successfully inhibited the formation of conjugated dienes, thiobarbituric acid reactive substances (TBARS) and lipid peroxides, and inhibited the electrophoretic mobility of LDL under oxidation. Compounds 1–3 exhibited similar activities, whereas compound 4 was less active. In macrophage-mediated LDL oxidation, the TBARS formation was also inhibited by these isoflavans (1–4) at a similar order of activity to that obtained in copper ion-induced LDL oxidation. On the other hand, 2′-O-methylglabridin (5), a synthesized compound, whose hydroxyl at 2′-position is protected and the hydroxyl at 4′-position is free, showed only minor inhibitory activity in both LDL oxidation systems. 2′,4′-O-Dimethylglabridin (6), whose hydroxyls at 2′- and 4′-positions are both protected, was inactive. Resorcinol (7), which is identical to the phenolic B ring in glabridin, presented low activity in these oxidation systems. The isoflavene glabrene (8), which contains an additional double bond in the heterocyclic C ring, was the most active compound of the flavonoid derivatives tested in both oxidation systems. The peak potential of compounds 1–5 (300 μM), tested at pH 7.4, was similar (425–530 mV), and that for compound 6 and 8 was 1078 and 80 mV, respectively. Within 30 min of incubation, compounds 1, 2, 3, 4, 8 scavenged 31%, 16%, 74%, 51%, 86%, respectively, of DPPH radical, whereas compounds 5 and 6, which almost did not inhibit LDL oxidation, also failed to scavenge DPPH. None of the isoflavan derivatives nor the isoflavene compound were able to chelate iron, or copper ions. These results suggest that the antioxidant effect of glabridin on LDL oxidation appears to reside mainly in the 2′ hydroxyl, and that the hydrophobic moiety of the isoflavan is essential to obtain this effect. It was also shown that the position of the hydroxyl group at B ring significantly affected the inhibitory efficiency of the isoflavan derivatives on LDL oxidation, but did not influence their ability to donate an electron to DPPH or their peak potential values.  相似文献   

11.
5-Acetoxymethyl-3-(4-bromophenyl)-2,5-dihydrofuran-2-one previously described as highly antifungally active was found to provide the corresponding 5-methylene derivative via an unusual DMSO-promoted elimination of the ester group at C5 under antifungal assay conditions. Since the latter possessed nearly the same antifungal effect as that originally reported for the former, the 5-acetoxymethyl furanone just served as a precursor of the actual antifungally active species. A few series of compounds with alkyloxy, aryloxy and alkylidene substituents at C5 of the parent furanone structure were therefore prepared and evaluated. In line with the ease of elimination of the substituent from C5, low activities of the 5-alkoxy compounds were observed. On the other hand, their 5-aryloxymethyl congeners were found to be capable of liberating the antifungally active 5-methylene furanone into the testing medium. The antifungal effect of the 5-alkylidene derivatives was highly sensitive to substitution of the alkylidene moiety; a substituent in the allylic position was necessary for a compound to retain high activity. Parallel evaluation of cytostatic activity showed moderate activities of the antifungally active derivatives against HeLa S3 and CCRF-CEM lines. Cell cycle analysis of CCRF-CEM cells following the treatment with 5-methylene-3-(4-bromophenyl)-2,5-dihydrofuran-2-one revealed that this compound is a necrotic agent.  相似文献   

12.
The antifungal effect of substituted 1-phenyl-5-mercaptotetrazoles was tested with Candida tropicalis, C. pseudotropicalis, C. mogii, Trichosporon cutaneum, Cryptococcus albidus and S. cerevisiae. Candida strains exhibited the lowest sensitivity to the compounds; the most sensitive was S. cerevisiae. The MIC values ranged from 40 to > 1000 mg/mL. The antifungal effect of halogenated compounds decreased in the series of bromo > chloro > fluoro derivatives. The electrochemical oxidation of substituted 1-phenyl-5-mercaptotetrazole derivatives in an acetonitrile medium was studied as a model for the enzymic oxidation of the substance, including study of the effect of water, perchloric and trifluoromethanesulfuric acids on E1/2 and I1. 5-Bis-(1-phenyltetrazolyl)disulfide, the compound with no antifungal effect, has been identified as the main oxidation product of 1-phenyl-5-mercaptotetrazole.  相似文献   

13.
The following 1-substituted derivatives of 5-methylphenazine and 5-ethylphenazine were synthesized: 1-(3-carboxypropyloxy)-5-methylphenazine (1B), 1-(3-carboxypropyloxy)-5-ethylphenazine (2B), 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine (2C) and 1-[N-(2-aminoethyl)carbamoylpropyloxy]-5-ethylphenazine (2D); their spectra, stability and reactivity as electron mediators were investigated, together with those of 5-methylphenazine (1A) and 5-ethylphenazine (2A). The 1-substituted derivatives are all insensitive to light and the derivatives of 5-ethylphenazine are more stable than those of 5-methylphenazine under neutral and alkaline conditions; 2B is the most stable of all the derivatives. The spectral properties of the decomposed compounds showed that photodecomposition of 1A and 2A is associated with hydroxylation at position 1, alkali decomposition of 1A and 1B with elimination of the 5-methyl group and alkali decomposition of 2A, 2B, and 2D with a ring-opening reaction. The second-order rate constant k1 for the reaction of the phenazine derivatives with NADH was measured under steady-state conditions. The k1 values vary depending on the substituents at positions 1 and 5: the values for 1A, 1B, 2A, 2B, 2C and 2D are 1.83 mM-1 s-1, 3.33 mM-1 s-1, 0.75 mM-1 s-1, 1.42 mM-1 s-1, 1.68 mM-1 s-1 and 2.03 mM-1 s-1, respectively. The rate constants, k2 and k3, for the reactions of the reduced form of 2B with oxygen and with 3-(4',5'-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium ion, respectively, were k2 = 1.21 mM-1 s-1 and k3 = 91 mM-1 s-1. These phenazine derivatives have potential applications in the biochemical field.  相似文献   

14.
A series of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole derivatives was synthesized and their activity screened in vitro against Staphylococcus aureus, Trypanosoma cruzi, and Candida albicans. The bioactivity was expressed as minimum inhibitory concentration (MIC) for S. aureus strains, and as fifty-percent inhibitory concentration (IC(50)) of parasite population growth for T. cruzi. A molecular modeling approach was performed to establish qualitative relationships regarding the biological data and the compounds' physicochemical properties. The 5-(4-OC(4)H(9)Ph, 5l), and 5-(4-CO(2)CH(3)Ph, 5o) derivatives were the most active compounds for S. aureus ATCC 25923 (MIC=1.95-1.25 μg/mL) and T. cruzi (IC(50)=7.91 μM), respectively. Also, a preliminary evaluation against C. albicans involving some compounds was performed and the 5-(4-CH(3)Ph, 5e) derivative was the most active compound (MIC=3.28-2.95 μg/mL). In this preliminary study, all synthesized 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole derivatives were active against all microorganisms tested.  相似文献   

15.
3,5-Di-t-butylhydroxytoluene (compound I) was converted into 4-hydroperoxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (compound II), 4-hydroxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (compound III) and 2,6-di-t-butyl-4-hydroxymethylphenol (compound IV) by rat liver microsomal preparations in the presence of NADPH and air. The oxidation of compound (I) by m-chloroperbenzoic acid also produced the same compounds. These results suggest that hydroperoxide can be an intermediate in aromatic hydroxylation and that biological oxygenations resemble per-acid reactions.  相似文献   

16.
Optimization of conditions for preparing synthetic pheomelanin   总被引:1,自引:0,他引:1  
Synthetic melanins are often used as the standards for natural melanins. Conditions for preparing synthetic pheomelanin from L-dopa and L-cysteine were studied under different temperatures (25 and 37 degrees C), different amounts of cysteine (1.5 and 2.0 eq), and different amounts of tyrosinase (10 and 20 mg). Effects of addition of catalase and of replacement of oxygen with air were also examined. The best preparation of pheomelanin was obtained in a good yield, when 1 mmol of L-dopa was oxidized at 25 degrees C under oxygen current in 100 ml of a pH 6.8 buffer by 20 mg of mushroom tyrosinase inn the presence of 1.5 mmol of L-cysteine. The pheomelanin thus obtained had an elemental composition and an absorption spectra that were very similar to those from a pheomelanin prepared by tyrosinase oxidation of 5-S-cysteinyldopa. Hydrolysis of synthetic pheomelanins and pheomelanic tissues with hydriodic acid gave aminohydroxyphenylalanines (AHP) as a major product and hydroxybenzothiazolylalanines as a minor product. It is proposed that AHP can be used as a specific indicator of purity of pheomelanins.  相似文献   

17.
Glutathione (GSH) and cysteine (CysH) have both been implicated in the biogenesis of the pheomelanin precursor 5-S-cysteinyldopa (5-S-CD). However, recent studies have shown that only CysH is transported across the membrane of isolated melanosomes, and that the positive regulation of CysH in pigment cells leads to an increased production of 5-S-CD. In the present study, the question was examined as to whether melanin precursors and tyrosinase could be coregulated by cellular thiols. To address this issue, the levels of CysH and GSH were varied in normal melanocytes and melanoma cells using buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis. Treatment with 50-100 microM BSO decreased GSH levels to less than 10% of control, and increased CysH levels between two- and five-fold in both cell types. Concomitant with this, an increase in the ratio of 5-S-CD to DOPA and a decrease in the pigment content of the cells were observed. The decrease in cell pigmentation was associated with strong decreases in tyrosine hydroxylase activity and 14C-melanin production. Only melanoma cells showed a modified tyrosinase isozyme pattern on Western immunoblots in response to BSO, while the mRNA expression of tyrosinase and TRP-1 were unchanged in both cell types. These results suggest that the balance between CysH and GSH, which is partly determined by the rate of utilization of CysH for GSH biosynthesis, regulates not only the levels of 5-S-CD and DOPA but also the melanogenic activity of pigment cells. Since DOPA functions as a cofactor in the monophenolase reaction of tyrosinase, it is proposed that the ratio of 5-S-CD to DOPA may be an important factor in the regulation of tyrosinase activity in situ.  相似文献   

18.
As a redhead I have had a personal interest in red hair, freckles and sunburns since childhood. An observation of a formaldehyde-induced fluorescence in human epidermal melanocytes initiated my scientific interest in these cells. Prota and Nicolaus demonstrated that oxidation products of cysteinyldopas are the main components of pheomelanin. Our identification of 5-S-cysteinyldopa as the source of formaldehyde-induced fluorescence of normal and pathological melanocytes started a series of investigations into this amino acid, enzymatic and non-enzymatic oxidation of catecholic compounds and the metabolism of thiols. All melanocytes with functioning tyrosinase produce cysteinyldopas and the levels of 5-S-cysteinyldopa in serum and urine are related to the size and pigment forming activity of the melanocyte population. The determination of 5-S-cysteinyldopa in serum or urine is a sensitive diagnostic method in the detection of melanoma metastasis. Some non-specific formation of cysteinyldopa is present in the body, as demonstrated by 5-S-cysteinyldopa in individuals with tyrosinase-negative albinism.  相似文献   

19.
Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus   总被引:1,自引:0,他引:1  
Molecular and cellular mechanisms underlying the sustained metal tolerance of ectomycorrhizal fungi are largely unknown. Some of the main mechanisms involved in metal detoxification appear to involve the chelation of metal ions in the cytosol with thiol-containing compounds, such as glutathione, phytochelatins, or metallothioneins. We used an improved high-performance liquid chromatography method for the simultaneous measurement of thiol-containing compounds from cysteine and its derivatives (gamma-glutamylcysteine, glutathione) to higher-molecular-mass compounds (phytochelatins). We found that glutathione and gamma-glutamylcysteine contents increased when the ectomycorrhizal fungus Paxillus involutus was exposed to cadmium. An additional compound with a 3-kDa molecular mass, most probably related to a metallothionein, increased drastically in mycelia exposed to cadmium. The relative lack of phytochelatins and the presence of a putative metallothionein suggest that ectomycorrhizal fungi may use a different means to tolerate heavy metals, such as Cd, than do their plant hosts.  相似文献   

20.
α-Tocopherol model compound, 2,2,5,7,8-pentamethyl-6-hydroxychroman was oxidized under oxygen bubbling. Four oxidation products of 2-(γ,γ-dimethylallyl)-3,5,6-trimethyl-1,4-benzoquinone (B), 2,2,7,8-tetramethyl-5-formyl-6-hydroxychroman (C), trimer (D) and tocopherylethane (G) were identified, and spirodimer (E) was tentatively identified by TLC. Two of them, (B) and (C) have not been obtained in the oxidation of α-tocopherol model compound with p-quinone, alkaline ferricyanide and other compounds as oxidizing agent. A scheme of oxidation mechanism of α-tocopherol model compound was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号