首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tartrate resistant acid phosphatase (TRAP) has been accepted as a marker for identification of osteoclasts. A method is reported here for quantitating TRAP using an image analysis system. The amount of the enzyme specific to osteoclasts can be used to differentiate osteoclasts from other cells capable of TRAP expression. TRAP expression characteristic of the osteoclast was compared with that of multinucleated giant cells (MNGC)s recruited to the site of subcutaneously implanted mineralized bone matrix. Two weeks post-implantation, the pellets were removed and processed for the demonstration of TRAP along with rat proximal tibiae. A large amount of TRAP was consistently expressed by the in situ osteoclasts. The MNGCs associated with the mineralized bone implants expressed little if any TRAP reaction product. Using this system, the amount of TRAP reaction product or any other enzyme reaction product expressed can be objectively and reproducibly quantitated.  相似文献   

2.
Tartrate resistant acid phosphatase (TRAP) has been accepted as a marker for identification of osteoclasts. A method is reported here for quantitating TRAP using an image analysis system. The amount of the enzyme specific to osteoclasts can be used to differentiate osteoclasts from other cells capable of TRAP expression. TRAP expression characteristic of the osteoclast was compared with that of multinucleated giant cells (MNGC)s recruited to the site of subcutaneously implanted mineralized bone matrix. Two weeks post-implantation, the pellets were removed and processed for the demonstration of TRAP along with rat proximal tibiae. A large amount of TRAP was consistently expressed by the in situ osteoclasts. The MNGCs associated with the mineralized bone implants expressed little if any TRAP reaction product. Using this system, the amount of TRAP reaction product or any other enzyme reaction product expressed can be objectively and reproducibly quantitated.  相似文献   

3.
We describe a high-resolution, fluorescence-based method for localizing endogenous alkaline phosphatase in tissues and cultured cells. This method utilizes ELF (Enzyme-Labeled Fluorescence)-97 phosphate, which yields an intensely fluorescent yellow-green precipitate at the site of enzymatic activity. We compared zebrafish intestine, ovary, and kidney cryosections stained for endogenous alkaline phosphatase using four histochemical techniques: ELF-97 phosphate, Gomori method, BCIP/NBT, and naphthol AS-MX phosphate coupled with Fast Blue BB (colored) and Fast Red TR (fluorescent) diazonium salts. Each method localized endogenous alkaline phosphatase to the same specific sample regions. However, we found that sections labeled using ELF-97 phosphate exhibited significantly better resolution than the other samples. The enzymatic product remained highly localized to the site of enzymatic activity, whereas signals generated using the other methods diffused. We found that the ELF-97 precipitate was more photostable than the Fast Red TR azo dye adduct. Using ELF-97 phosphate in cultured cells, we detected an intracellular activity that was only weakly labeled with the other methods, but co-localized with an antibody against alkaline phosphatase, suggesting that the ELF-97 phosphate provided greater sensitivity. Finally, we found that detecting endogenous alkaline phosphatase with ELF-97 phosphate was compatible with the use of antibodies and lectins. (J Histochem Cytochem 47:1443-1455, 1999)  相似文献   

4.
Tartrate-resistant acid phosphatase (TRAP) is essential for elimination of Staphylococcus aureus, the main infectious agent responsible for osteomyelitis. This in vitro study investigated uptake and processing of fluorescence-labeled S. aureus by human osteoclasts and dendritic cells. The cells were stained for TRAP and the acidic compartment using a fluorescence-based protocol. In dendritic cells, TRAP and bacteria were colocalized. In osteoclasts, there was no colocalization of bacteria, TRAP, or the acidic compartment, indicating that there are three distinct vesicular compartments: the apical phago-lysosomal compartment, the basal secretory compartment, and the basolateral transcytotic compartment. Dissociation of the TRAP-containing transcytotic vesicles from the apical phago-lysosomal compartment may restrain osteoclasts from eliminating S. aureus.  相似文献   

5.
Histochemical detection of tartrate-resistant acid phosphatase (TRAP) activity is a fundamental technique for visualizing osteoclastic bone resorption and assessing osteoclast activity status in tissues. This approach has mostly employed colorimetric detection, which has limited quantification of activity in situ and co-labelling with other skeletal markers. Here, we report simple colorimetric and fluorescent TRAP assays in zebrafish and medaka, two important model organisms for investigating the pathogenesis of bone disorders. We show fluorescent TRAP staining, utilising the ELF97 substrate, is a rapid, robust, and stable system to visualise and quantify osteoclast activity in zebrafish, and is compatible with other fluorescence stains, transgenic lines and antibody approaches. Using this approach, we show that TRAP activity is predominantly found around the base of the zebrafish pharyngeal teeth, where osteoclast activity state appears to be heterogeneous.Key words: TRAP, tartrate-resistant acid phosphatase, osteoclast, ELF97, fracture, zebrafish, medaka  相似文献   

6.
Tartrate-resistant acid phosphatase (TRAP) has been used as a cytochemical marker for the cell mediators of bone resorption, osteoclasts and their mononuclear precursors. We have applied a cytochemical method for TRAP to study the dependence of the osteoclast-mediated bone resorption of tooth eruption on the dental follicle, a connective tissue investment of the developing tooth, by analyzing the TRAP activity of mononuclear cells in the dental follicle before and during pre-molar eruption in dogs. The percentage of TRAP-positive monocyte cells increases until mid-eruption, slightly preceding a previously demonstrated rise in numbers of osteoclasts on adjacent bone surfaces. These data suggest an ontogenetic relationship between follicular mononuclear cells and osteoclasts on adjacent alveolar bone surfaces during tooth eruption. However, because TRAP occurs in other tissues and is not an exclusive indicator of pre-osteoclasts, proof of their relationship will have to await application of more definitive techniques.  相似文献   

7.
The objective of the present study was to develop a specific method for the separation of tartrate-resistant acid phosphatase (TRAP) derived exclusively from osteoclasts. Heparin column-bound TRAP in human serum was separated into three peaks of TRAP activity when eluted with a linear gradient of sodium chloride. The last peak corresponded to TRAP 5b which was first named according to its electrophoretic mobility [Clin. Chem. 24 (1978) 309] and was considered to be derived from osteoclasts [J. Bone Miner. Res. 13 (1998) 683]. The second peak was found to be TRAP 5a. The height of the last peak varied from age to age.  相似文献   

8.
We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants kcat/KM for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M(-1) s(-1)and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.  相似文献   

9.
Tartrate-resistant acid phosphatase (TRAP) is expressed by osteoclasts, macrophages and dendritic cells. TRAP has been identified in a wide variety of tissues, however, its biological function is not fully understood. Serum TRAP is a marker of diseases involving excessive bone resorption including metastatic bone disease in breast cancer patients and can be used to monitor responses to treatment. Our aim in this study was to determine whether TRAP is expressed by human breast tumours. Four breast cancer cell lines were assayed for TRAP activity. MDA-MB-435, the most tumourigenic line, had an activity twofold higher than the other cell lines. Immunohistochemistry using a TRAP specific antibody confirmed that both cell lines and human breast tumours express TRAP. Expression was absent in benign tissues and abundant in more aggressive tumours. This work suggests that tumour derived TRAP contributes to the raised enzyme activity found in the serum of breast cancer patients.  相似文献   

10.
11.
We previously reported a simple method to detect osteoid matrices in decalcified bone sections by pre-treatment with cyanuric chloride. We have applied this technique to identify osteoclasts and their precursors in rats. In JB-4 sections prepared from untreated bone tissues with cyanuric chloride, both acid phosphatase (ACP) and tartrate-resistant acid phosphatase (TRAP) were found not only in osteoclasts and bone marrow mononuclear cells but also in osteoblasts. In contrast, treatment of bones with cyanuric chloride resulted in staining ACP preferentially in osteoclasts and mononuclear cells adjacent to the bone surface. In the osteoclasts and most of the ACP-positive mononuclear cells, autoradiography showed calcitonin binding. Decalcification with EDTA did not affect the staining for ACP activity in bones treated with cyanuric chloride. It was possible to simultaneously identify ACP and osteoid matrix in a decalcified section. In soft tissues without treatment with cyanuric chloride, both ACP and TRAP were detected in splenic macrophages, alveolar macrophages, and proximal convoluted ducts in kidney. Neither ACP nor TRAP was found in these cell types in the tissues treated with cyanuric chloride. This procedure provides a new, simple method to identify a more restricted population in the osteoclastic lineage than that detected by TRAP staining.  相似文献   

12.
There have been dramatic advances recently in our understanding of the regulation of osteoclastic differentiation. However, much less is known of the mechanisms responsible for the induction and modulation of resorptive behavior. We have developed a strategy whereby osteoclasts can be generated in vitro and released into suspension in a fully-functional state. We now exploit this approach to show that tartrate-resistant acid phosphatase (TRAP) is released by osteoclasts during bone resorption. TRAP release was inhibited by the secretion-inhibitor Brefeldin A, and was not accompanied by LDH release. This suggests that TRAP release is due to secretion, rather than cell death. Consistent with this, TRAP secretion was stimulated by resorbogenic cytokines, was inhibited by the resorption-inhibitor calcitonin, and correlated with excavation of the bone surface. We found that, in contrast to incubation on bone, incubation on plastic, glass, or vitronectin-coated plastic substrates did not induce secretion of TRAP. This suggests that the induction of resorptive behavior in osteoclasts depends upon stimulation by bone matrix of a putative osteoclastic "mineral receptor." Release of TRAP by osteoclasts thus represents not only a productive approach to the analysis of the mechanisms that modulate the rate of resorptive activity, but also a system whereby the mechanism through which bone substrates induce resorptive behavior can be identified.  相似文献   

13.
Serial sections of rat metaphyses were prepared from paraffin embedded tissue blocks and analyzed in sets of three. The central section was stained for tartrate resistant acid phosphatase (TRAP) in order to identify osteoclasts, one adjacent section was immunostained with an affinity purified antibody to a 15 amino acid sequence unique to rat PTH/PTHrP receptor, and the other adjacent section in the set served as an immunostaining control. This allowed each of the 110 osteoclasts examined to be identified by TRAP and to be tested for the presence or absence of PTH/PTHrP receptor. All antibody solutions and rinses contained 1% donkey serum and 0.5% Tween 20 to ensure antibody integrity and good rinsing procedure. Confocal microscopy was used to evaluate fluorescence intensity of the immunostained osteoclasts. Pixel intensities of 58 osteoclasts from young (4 month) rats and 52 osteoclasts from old (15 month) rats were obtained. Pixel intensities were similar (P = 0.89) for both young and old animals. However, the number of PTH/PTHrP receptor deficient osteoclasts was greater for the older animals (14.29% vs. 7.24%). This provides direct evidence of PTH/PTHrP receptors in osteoclasts.  相似文献   

14.
It has been demonstrated that ELF97-phosphate (ELF-P) is a useful tool to detect and quantify phosphatase activity of phytoplankton populations at a single cell level. Recently, it has been successfully applied to marine heterotrophic bacteria in culture samples, the cells exhibiting phosphatase activity being detected using epifluorescence microscopy. Here, we describe a new protocol that enables the detection of ELF alcohol (ELFA), the product of ELF-P hydrolysis, allowing the detection of phosphatase positive bacteria, using flow cytometry. Bacteria from natural samples must be disaggregated and, in oligotrophic waters, concentrated before they can be analyzed by flow cytometry. The best efficiency for disaggregating/separating bacterial cell clumps was obtained by incubating the sample for 30 min with Tween 80 (10 mg l(-1), final concentration). A centrifugation step (20,000 g; 30 min) was required in order to recover all the cells in the pellet (only 7+/-2% of the cells were recovered from the supernatant). The cells and the ELFA precipitates were resistant to these treatments. ELFA-labelled samples were stored in liquid nitrogen for up to four months before counting without any significant loss in total or ELFA-labelled bacterial cell abundance or in the ELFA fluorescence intensity. We describe a new flow cytometry protocol for detecting and discriminating the signals from both ELFA and different counterstains (4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)) necessary to distinguish between ELFA-labelled and non ELFA-labelled heterotrophic bacteria. The method has been successfully applied in both freshwater and marine samples. This method promises to improve our understanding of the physiological response of heterotrophic bacteria to P limitation.  相似文献   

15.
Complementary DNAs encoding two major osteoclastic markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin K (Cath K) were cloned from the scales of a teleost, the goldfish. This is the first report of the full coding sequence of TRAP and Cath K molecules in fish. In the goldfish scale both TRAP and Cath K mRNAs were expressed in the multinucleate osteoclasts, which showed large numbers of mitochondria and lysosomes, and a well developed ruffled border. These characteristic features of osteoclasts in the scales are similar to those in mammals. Most teleosts use the scale as an internal calcium reservoir during the reproductive season. The expression of TRAP and Cath K mRNAs in the scale significantly increased in April, which is a reproductive season, compared with that in October, a non-reproductive season. Thus, both of these molecular markers should be useful for the study of osteoclasts in the teleost scale.  相似文献   

16.
Osteoclasts are multinucleated cells specialized in degrading bone and characterized by high expression of the enzymes tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CtsK). Recent studies show that osteoclasts exhibit phenotypic differences depending on their anatomical site of action.Using immunohistochemistry, RT-qPCR, FPLC chromatography and immunoblotting, we compared TRAP expression in calvaria and long bone. TRAP protein and enzyme activity levels were higher in long bones compared to calvaria. In addition, proteolytic processing of TRAP was more extensive in long bones than calvaria which correlated with higher cysteine proteinase activity and protein expression of CtsK. These two types of bones also exhibited a differential expression of monomeric TRAP and CtsK isoforms. Analysis of CtsK−/− mice revealed that CtsK is involved in proteolytic processing of TRAP in calvaria. Moreover, long bone osteoclasts exhibited higher expression of not only TRAP and CtsK but also of the membrane markers CD68 and CD163.The results suggest that long bone osteoclasts display an augmented osteoclastic phenotype with stronger expression of both membranous and secreted osteoclast proteins.  相似文献   

17.
Tartrate-resistant acid phosphatase (TRAP) is a well-known marker of osteoclasts and bone resorption. Here we have investigated whether osteoblast-like cells (hFOB 1.19) present TRAP activity and how would be its pattern of expression during osteoblastic differentiation. We also observed how the osteoblastic differentiation affected the reduced glutathione levels. TRAP activity was measured using the p-nitrophenylphosphate substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity and mineralized nodule formation. Oxidative stress was determined by HPLC and DNTB assays. TRAP activity and the reduced glutathione-dependent microenvironment were modulated during osteoblastic differentiation. During this phase, TRAP activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day, decreasing thereafter. We demonstrate that TRAP activity is modulated during osteoblastic differentiation, possibly in response to the redox state of the cell, since it seemed to depend on suitable levels of reduced glutathione.  相似文献   

18.
Tartrate-resistant acid phosphatase (TRAP) has been proposed as a cytochemical marker for osteoclasts. We have developed an improved technique for the localization of TRAP in rat and mouse bone and cartilage. This procedure employs JB-4 plastic as the embedding medium, permits decalcification, and results in improved morphology compared with frozen sections. Peritoneal lavage cells were used to determine the appropriate isomer and concentration of tartrate necessary for inhibition of tartrate-sensitive acid phosphatase. After incubation in medium containing 50 mM L(+)-tartaric acid, osteoclasts and chondroclasts were heavily stained with reaction product. On the basis of their relative sensitivity to tartrate inhibition, three populations of mononuclear cells could also be distinguished. These three populations may represent: heavily stained osteoclast/chondroclast precursors; sparsely stained osteoblast-like cells lining the bone surface; and unstained cells of monocyte-macrophage lineage. Our results are consistent with the use of TRAP as a histochemical marker for study of the osteoclast.  相似文献   

19.
Tartrate-resistant acid phosphatase (TRAP) is a characteristic constituent of osteoclasts and some mononuclear preosteoclasts and, therefore, used as a histochemical and biochemical marker for osteoclasts and bone resorption. We now report the isolation of a 1397-base pair (bp) full-length TRAP/tartrate-resistant acid ATPase (TrATPase) cDNA clone from a neonatal rat calvaria lambda gt11 cDNA library. The cDNA clone consists of a 92-bp untranslated 5'-flank, an open reading frame of 981 bp and a 324-bp untranslated 3'-poly(A)-containing region. The deduced protein sequence of 327 amino acids contains a putative cleavable signal sequence of 21 amino acids. The mature polypeptide of 306 amino acids has a calculated Mr of 34,350 Da and a pI of 9.18, and it contains two potential N-glycosylation sites and the lysosomal targeting sequence DKRFQ. At the protein level, the sequence displays 89-94% homology to TRAP enzymes from human placenta, beef spleen, and uteroferrin and identity to the N terminus of purified rat bone TRAP/TrATPase. An N-terminal amino acid segment is strikingly homologous to the corresponding region in lysosomal and prostatic acid phosphatases. The cDNA recognized a 1.5-kilobase mRNA in long bones and calvaria, and in vitro translation using, as template, mRNA transcribed from the full-length insert yielded an immunoprecipitated product of 34 kDa. In neonatal rats, TRAP/TrATPase mRNA was highly expressed in skeletal tissues, with much lower (less than 10%) levels detected in spleen, thymus, liver, skin, brain, kidney, brain, lung, and heart. In situ hybridization demonstrated specific labeling of osteoclasts at endostal surfaces and bone trabeculae of long bones. Thus, despite the apparent similarity of this osteoclastic TRAP/TrATPase with type 5, tartrate-resistant and purple, acid phosphatases expressed in other mammalian tissues, this gene appears to be preferentially expressed at skeletal sites.  相似文献   

20.
Enzymatic activity of type 5 tartrate-resistant acid phosphatase (TRAP) has been regarded as one of the reliable markers for osteoclasts and their precursors. The presence of TRAP activity in osteocytes near the bone resorbing surface has also been pointed out in some reports. However, the significance of TRAP reactions in osteocytes remains controversial and, in fact, there is no agreement as to whether the histochemical enzyme reactions in osteocytes represent the TRAP enzyme generated by the respective osteocytes or is a mere diffusion artifact of the reaction products derived from the nearby osteoclasts. Current histochemical, immunohistochemical, and in situ hybridization studies of rat and canine bones confirmed TRAP enzyme activity, TRAP immunoreactivity, and the expression of Trap mRNA signals in osteocytes located close to the bone-resorbing surface. TRAP/Trap- positive osteocytes thus identified were confined to the areas no further than 200 microm from the bone-resorbing surface and showed apparent upregulation of TRAP/Trap expression toward the active osteoclasts. Spatial and temporal patterns of TRAP/Trap expression in the osteocytes should serve as a valuable parameter for further analyses of biological interactions between the osteocytes and the osteoclasts associated with bone remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号