首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Camelidae possess an unusual form of antibodies lacking the light chains. The variable domain of these heavy chain antibodies (V(HH)) is not paired, while the V(H) domain of all other antibodies forms a heterodimer with the variable domain of the light chain (V(L)), held together by a hydrophobic interface. Here, we analyzed the biophysical properties of four camelid V(HH) fragments (H14, AMD9, RN05, and CA05) and two human consensus V(H)3 domains with different CDR3 loops to gain insight into factors determining stability and aggregation of immunoglobulin domains. We show by denaturant-induced unfolding equilibria that the free energies of unfolding of V(HH) fragments are characterized by Delta G(N-U) values between 21.1 and 35.0 kJ/mol and thus lie in the upper range of values for V(H) fragments from murine and human antibodies. Nevertheless, the V(HH) fragments studied here did not reach the high values between 39.7 and 52.7 kJ/mol of the human consensus V(H)3 domains with which they share the highest degree of sequence similarity. Temperature-induced unfolding of the V(HH) fragments that were studied proved to be reversible, and the binding affinity after cooling was fully retained. The melting temperatures were determined to be between 60.1 and 66.7 degrees C. In contrast, the studied V(H)3 domains aggregated during temperature-induced denaturation at 63-65 degrees C. In summary, the camelid V(HH) fragments are characterized by a favorable but not unusually high stability. Their hallmark is the ability to reversibly melt without aggregation, probably mediated by the surface mutations characterizing the V(HH) domains, which allow them to regain binding activity after heat renaturation.  相似文献   

2.
We report a comprehensive analysis of sequence features that allow for the production of autonomous human heavy chain variable (V(H)) domains that are stable and soluble in the absence of a light chain partner. Using combinatorial phage-displayed libraries and conventional biophysical methods, we analyzed the entire former light chain interface and the third complementarity determining region (CDR3). Unlike the monomeric variable domains of camelid heavy chain antibodies (V(H)H domains), in which autonomous behavior depends on interactions between the hydrophobic former light chain interface and CDR3, we find that the stability of many in vitro evolved V(H) domains is essentially independent of the CDR3 sequence and instead derives from mutations that increase the hydrophilicity of the former light chain interface by replacing exposed hydrophobic residues with structurally compatible hydrophilic substitutions. The engineered domains can be expressed recombinantly at high yield, are predominantly monomeric at high concentrations, unfold reversibly, and are even more thermostable than typical camelid V(H)H domains. Many of the stabilizing mutations are rare in natural V(H) and V(H)H domains and thus could not be predicted by studying natural sequences and structures. The results demonstrate that autonomous V(H) domains with structural properties beyond the scope of natural frameworks can be derived by using non-natural mutations, which differ from those found in camelid V(H)H domains. These findings should enable the development of libraries of synthetic V(H) domains with CDR3 diversities unconstrained by structural demands.  相似文献   

3.
The refolding kinetics of a single-chain Fv (scFv) fragment, derived from a stabilized mutant of the phosphorylcholine binding antibody McPC603, was investigated by H/D exchange and ESI-MS and compared with the folding kinetics of its constituting domains V(H) and V(L). Both V(H) and V(L) adopt essentially native-like exchange protection within the dead time of the manual-mixing H/D exchange experiment (10 s) and in the case of V(L), which contains two cis-prolines in the native conformation, this fast protection is independent of proline cis/trans isomerization. At the earliest time point resolvable by manual mixing, fewer deuterons are protected in the scFv fragment than in the two isolated domains together, despite the fact that the scFv fragment is significantly more stable than V(L) and V(H). Full H/D exchange protection in the scFv fragment is gained on a time scale of minutes. This means that the domains in the scFv fragment do not refold independently. Rather, they associate prematurely and in nonnative form, a kinetic trap. Unproductive domain association is observed both after equilibrium- and short-term denaturation. For the equilibrium-denatured scFv fragment, whose native structure formation is dependent on a cis conformation of an interface proline in V(L), this cis/trans isomerization reaction proceeds about one order in magnitude more slowly than the escape from the trap to a conformation where full H/D exchange protection is already achieved. We interpret these data in terms of a general kinetic scheme involving intermediates with and without domain association.  相似文献   

4.
The folding of immunoglobulin domains requires the formation of a conserved structural disulfide. Therefore, as a general rule, they cannot be functionally expressed in the reducing environment of the cellular cytoplasm. We have previously reported that stability engineering can lead to the cytoplasmic expression of functional immunoglobulin V(L) domains. Here we apply rational stability engineering by consensus sequence analysis to V(H) domains. Isolated V(H) domains tend to aggregate more easily than V(L) domains; they do not refold quantitatively and are generally more difficult to handle in vitro. To overcome these problems, we successfully predicted and experimentally verified several stabilizing point mutations in the V(H) domain of a designed, catalytic Fv fragment. The effect of single mutations was additive, and they could be combined in a prototype domain with significantly improved stability against chemical denaturation and a 20-fold increased half time of irreversible thermal denaturation, at physiological temperature. This stabilized, isolated V(H) domain could be expressed solubly in the reducing cellular cytoplasm of Escherichia coli, at a yield of approximately 1.2 mg/L of shake flask culture. It remains fully functional, as evidenced by the successful reconstitution of an esterolytic Fv fragment with the V(L) domain. This success provides further evidence that consensus sequence engineering is a rational, plannable route to the construction of intrabodies.  相似文献   

5.
A non-camelized human V(H) domain has been crystallized through limited in vitro proteolysis of scFvM12 antibody fragment. The protease addition results in the complete degradation of the M12-V(L) domain, linker, and purification tags. The structure solved up to 1.5A resolution having good stereochemistry with a R(cryst) factor of 15.8% and R(free) factor of 19.7%. Dihedral angle values comparison of the first and the second complementarity-determining region (CDR) of M12-V(H) domain with an average values show a significant deviation; therefore, M12-V(H) domain structure indicates either the existence of a new canonical subclass or a link among the subclasses of canonical main-chain conformation in V(H)3 family. The presence of uncommon hydrogen bond between Ser-H50 and Tyr-H97 has pulling effect on CDR-H3 loop. The interface area buried by CDR-H3 loop indicates the partial coverage of the hydrophobic V(L)-V(H) interface. The isolated M12-V(H) domain was found soluble up to 0.35 mM. This result would be helpful in structure based designing of an isolated human single domain antibody fragments for biotechnological and pharmaceutical applications such as cancer.  相似文献   

6.
Biophysical properties of human antibody variable domains   总被引:4,自引:0,他引:4  
There are great demands on the stability, expression yield and resistance to aggregation of antibody fragments. To untangle intrinsic domain effects from domain interactions, we present first a systematic evaluation of the isolated human immunoglobulin variable heavy (V(H)) and light (V(L)) germline family consensus domains and then a systematic series of V(H)-V(L) combinations in the scFv format. The constructs were evaluated in terms of their expression behavior, oligomeric state in solution and denaturant-induced unfolding equilibria under non-reducing conditions. The seven V(H) and seven V(L) domains represent the consensus sequences of the major human germline subclasses, derived from the Human Combinatorial Antibody Library (HuCAL). The isolated V(H) and V(L) domains with the highest thermodynamic stability and yield of soluble protein were V(H)3 and V(kappa)3, respectively. Similar measurements on all domain combinations in scFv fragments allowed the scFv fragments to be classified according to thermodynamic stability and in vivo folding yield. The scFv fragments containing the variable domain combinations H3kappa3, H1bkappa3, H5kappa3 and H3kappa1 show superior properties concerning yield and stability. Domain interactions diminish the intrinsic differences of the domains. ScFv fragments containing V(lambda) domains show high levels of stability, even though V(lambda) domains are surprisingly unstable by themselves. This is due to a strong interaction with the V(H) domain and depends on the amino acid sequence of the CDR-L3. On the basis of these analyses and model structures, we suggest possibilities for further improvement of the biophysical properties of individual frameworks and give recommendations for library design.  相似文献   

7.
8.
Although the cooperativity of the V(H) and V(L) domains of an antibody in antigen binding has been extensively studied, the interaction between the V(H) and V(L) domains had not received sufficient attention. To systematically investigate the relationship between the amino acid sequence and V(H)/V(L) interaction strength, we here used a set of anti-bovine serum albumin antibodies having a single human framework for V(H) (V3-23/DP-47 and JH4b) and Vk (O12/O2/DPK9 and Jk1), but with different V(H)/V(L) interaction strengths. By phage display of a V(H) mini-library and analysis of the interaction of amino acids with immobilized V(L) fragments, the residue at H95 (Kabat numbering) at the beginning of seven CDR H3 residues was found to play a key role in determining the V(H)/V(L) interaction. On saturation mutagenesis of H95, Gly showed the strongest interaction, while Asp, Asn, and Glu showed lesser interaction in that order. The generality of the rule was confirmed by the test with urine-derived human L chain instead of a particular V(L). The results demonstrate that H95 plays a central role in deciding the V(H)/V(L) interaction of human Fvs that have most commonly found frameworks.  相似文献   

9.
Antigen-antibody complexes provide useful models for analyzing the thermodynamics of protein-protein association reactions. We have employed site-directed mutagenesis, X-ray crystallography, and isothermal titration calorimetry to investigate the role of hydrophobic interactions in stabilizing the complex between the Fv fragment of the anti-hen egg white lysozyme (HEL) antibody D1.3 and HEL. Crystal structures of six FvD1.3-HEL mutant complexes in which an interface tryptophan residue (V(L)W92) has been replaced by residues with smaller side chains (alanine, serine, valine, aspartate, histidine, and phenylalanine) were determined to resolutions between 1.75 and 2.00 A. In the wild-type complex, V(L)W92 occupies a large hydrophobic pocket on the surface of HEL and constitutes an energetic "hot spot" for antigen binding. The losses in apolar buried surface area in the mutant complexes, relative to wild-type, range from 25 (V(L)F92) to 115 A(2) (V(L)A92), with no significant shifts in the positions of protein atoms at the mutation site for any of the complexes except V(L)A92, where there is a peptide flip. The affinities of the mutant Fv fragments for HEL are 10-100-fold lower than that of the original antibody. Formation of all six mutant complexes is marked by a decrease in binding enthalpy that exceeds the decrease in binding free energy, such that the loss in enthalpy is partly offset by a compensating gain in entropy. No correlation was observed between decreases in apolar, polar, or aggregate (sum of the apolar and polar) buried surface area in the V(L)92 mutant series and changes in the enthalpy of formation. Conversely, there exist linear correlations between losses of apolar buried surface and decreases in binding free energy (R(2) = 0.937) as well as increases in the solvent portion of the entropy of binding (R(2) = 0.909). The correlation between binding free energy and apolar buried surface area corresponds to 21 cal mol(-1) A(-2) (1 cal = 4.185 J) for the effective hydrophobicity at the V(L)92 mutation site. Furthermore, the slope of the line defined by the correlation between changes in binding free energy and solvent entropy approaches unity, demonstrating that the exclusion of solvent from the binding interface is the predominant energetic factor in the formation of this protein complex. Our estimate of the hydrophobic contribution to binding at site V(L)92 in the D1.3-HEL interface is consistent with values for the hydrophobic effect derived from classical hydrocarbon solubility models. We also show how residue V(L)W92 can contribute significantly less to stabilization when buried in a more polar pocket, illustrating the dependence of the hydrophobic effect on local environment at different sites in a protein-protein interface.  相似文献   

10.
We have previously designed antibody-cytokine receptor chimeras that could respond to a cognate antigen. While these chimeric receptors were functional, it has not been investigated exactly how they mimic signal transduction through corresponding wild-type receptors. In this study, we compared the growth properties and the phosphorylation status of intracellular signal transducers between the erythropoietin receptor (EpoR)- or gp130-based chimeric receptors and wild-type EpoR or EpoR-gp130 chimera, respectively. Expression plasmids, encoding V(H) or V(L) region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2 domain of EpoR and transmembrane/cytoplasmic domains of either EpoR or gp130, were constructed, and pairs of chimeric receptor combinations (V(H)-EpoR and V(L)-EpoR, V(H)-gp130 and V(L)-gp130, V(H)-EpoR and V(L)-gp130, V(H)-gp130 and V(L)-EpoR) were expressed in an IL-3-dependent myeloid cell line, 32D. Growth assay revealed that the transfectants all grew in a HEL-dependent manner. As for phosphorylation of Stat3, Stat5, ERK and Akt, the chimeric receptors showed similar activation pattern of signalling molecules with wild-type receptors, although the chimeric receptors showed ligand-independency and a little lower maximal phosphorylation than the corresponding wild-type receptors. The results demonstrate that antibody-receptor chimeras could substantially mimic wild-type receptors.  相似文献   

11.
Previous studies have indicated differences in the specificity-determining residues (SDRs) of antibodies that recognize haptens, peptides, or proteins. Here, we designed a V(H) repertoire based on the human scaffold 3-23/J(H)4 and diversification of high and medium-usage SDRs of anti-protein and anti-peptide antibodies. The repertoire was synthesized by overlapping polymerase chain reaction (PCR) and combined with the V(L) chain of the anti-hen egg-white lysozyme (HEL) antibody D1.3. The resulting chimeric single-chain Fv fragments (scFvs) phage-displayed library was panned in HEL-coated immunotubes. After two rounds of selection under non-stringent conditions, that is, trypsinization after 2 h of incubation at room temperature, 63 of 167 clones analyzed (38%) were found to express scFvs specific to HEL. Twenty clones were characterized by DNA sequencing resulting in 10 unique scFvs. Interestingly, the panel of unique scFvs was highly diverse, with V(H) sequences differing in 16 of the 17 positions variegated in the repertoire. Thus, diverse chemico-physical and structural solutions were selected from the library, even when the V(H) repertoire was constrained by the V(L) chain of D1.3 to yield binders against a definite region of HEL surface. The more often selected scFvs, namely H6-1 and B7-1, which differed in eight SDRs, showed levels of expression in E. coli TG1 strain, 6 and 10 times higher than the parental D1.3 Fv fragment, respectively. Dissociation constants (K(Ds)) measured in the BIAcore were 11 and 6.6 nM for H6-1 and B7-1, respectively. These values compared well to the K(D) of 4.7 nM measured for D1.3, indicating that the V(H) repertoire here designed is a valuable source of diverse, well-expressed and high affinity V(H) domains.  相似文献   

12.
In a systematic study of V gene families carried out with consensus V(H) and V(L) domains alone and in combinations in the scFv format, we found comparatively low expression yields and lower cooperativity in equilibrium unfolding in antibody fragments containing V(H) domains of human germline families 2, 4, and 6. From an analysis of the packing of the hydrophobic core, the completeness of charge clusters, the occurrence of unsatisfied hydrogen bonds, and residues with low beta-sheet propensities, positive Phi angles, and exposed hydrophobic side chains, we pinpointed residues potentially responsible for the unsatisfactory properties of these germline-encoded sequences. Several of those are in common between the domains of the even-numbered subgroups, but do not occur in the odd-numbered ones. In this study, we have systematically exchanged those residues alone and in combination in two different scFvs using the V(H)6 framework, and we describe their effect on equilibrium stability and folding yield. We improved the stability by 20.9 kJ/mol and the expression yield by a factor of 4 and can now use these data to rationally engineer antibodies derived from this and similar germline families for better biophysical properties. Furthermore, we provide an improved design for libraries exploiting the significant additional diversity provided by these frameworks. Both antibodies studied here completely retain their binding affinity, demonstrating that the CDR conformations were not affected.  相似文献   

13.
The transparency of the eye lens depends on the high solubility and stability of the lens crystallin proteins. The monomeric gamma-crystallins and oligomeric beta-crystallins have paired homologous double Greek key domains, presumably evolved through gene duplication and fusion. Prior investigation of the refolding of human gammaD-crystallin revealed that the C-terminal domain folds first and nucleates the folding of the N-terminal domain. This result suggested that the human N-terminal domain might not be able to fold on its own. We constructed and expressed polypeptide chains corresponding to the isolated N- and C-terminal domains of human gammaD-crystallin, as well as the isolated domains of human gammaS-crystallin. Both circular dichroism and fluorescence spectroscopy indicated that the isolated domains purified from Escherichia coli were folded into native-like monomers. After denaturation, the isolated domains refolded efficiently at pH 7 and 37 degrees C into native-like structures. The in vitro refolding of all four domains revealed two kinetic phases, identifying partially folded intermediates for the Greek key motifs. When subjected to thermal denaturation, the isolated N-terminal domains were less stable than the full-length proteins and less stable than the C-terminal domains, and this was confirmed in equilibrium unfolding/refolding experiments. The decrease in stability of the N-terminal domain of human gammaD-crystallin with respect to the complete protein indicated that the interdomain interface contributes of 4.2 kcal/mol to the overall stability of this very long-lived protein.  相似文献   

14.
A site-specific and efficient fluorolabeling of antibody variable regions with green fluorescent protein (GFP) variants and its application to an energy transfer-based homogeneous fluoroimmunoassay (open sandwich FIA) were attempted. Two chimeric proteins, Trx-V(H)-EBFP and Trx-V(L)-EGFP, consisting of V(H) and V(L) fragments of anti-hen egg lysozyme (HEL) antibody HyHEL-10 and two GFP color variants, EBFP and EGFP, respectively, were designed to be expressed in cytoplasm of trxB - mutant Escherichia coli as fusions with thioredoxin from E.coli The mixture of two proteins could be purified with HEL-affinity chromatography, retaining sufficient intrinsic fluorescence and binding activity to HEL. A significant increase in fluorescence resonance energy transfer (FRET) dependent on HEL concentration was observed, indicating the reassociation of the V(H) and V(L) domains of these chimeric proteins due to co-existing antigen. With this open sandwich FIA, an HEL concentration of 1-100 microg/ml could be non-competitively determined. The assay could be performed in a microplate format and took only a few minutes to obtain a sufficient signal after simple mixing of the chimeric proteins with samples. This represents the first demonstration that the FRET between GFP variants is applicable to homogeneous immunoassay.  相似文献   

15.
Staphylococcal protein A (SpA) is a cell-surface component of Staphylococcus aureus. In addition to the well-characterized interaction between SpA and the Fc-region of human IgG, an alternative binding interaction between SpA and the Fab-region of immunoglobulin domains encoded by the V(H)3 gene family has been described. To characterize structurally the interface formed by SpA repeats and type-3 V(H)-domains, we have studied the 32-kDa complex formed between an E-domain mutant (EZ4) and the Fv-fragment of the humanized anti-HER2 antibody (Hu4D5-8) using heteronuclear NMR spectroscopy. Protocols were established for efficient incorporation of (15)N, (13)C, and (2)H into EZ4 and the V(H)- and V(L)-domains of the Fv, allowing backbone resonances to be assigned sequentially for EZ4 and the V(H)-domain in both free and complexed states. Broadening of certain V(H)-resonances in the free and bound Fv-fragment suggests microsecond to millisecond time-scale motion in CDR3. Residues experiencing significant chemical shift changes of backbone (1)H(N), (15)N, and (13)CO resonances upon complex formation delineate contiguous surfaces on EZ4 and the V(H)-domain that define the binding interfaces of the two proteins. The interaction surfaces identified by chemical shift mapping are comprised of predominantly hydrophilic residues. This is in contrast to the SpA-Fc interface which is predominantly hydrophobic in nature. Further analysis of the surface properties suggests a probable binding orientation for SpA- and V(H)3-domains.  相似文献   

16.
Crystal structure of the human myeloid cell activating receptor TREM-1   总被引:11,自引:0,他引:11  
Triggering receptors expressed on myeloid cells (TREM) are a family of recently discovered receptors that play important roles in innate immune responses, such as to activate inflammatory responses and to contribute to septic shock in response to microbial-mediated infections. To date, two TREM receptors in human and several homologs in mice have been identified. We report the 2.6 A resolution crystal structure of the extracellular domain of human TREM-1. The overall fold of the receptor resembles that of a V-type immunoglobulin domain with differences primarily located in the N-terminal strand. TREM-1 forms a "head-to-tail" dimer with 4100 A(2) interface area that is partially mediated by a domain swapping between the first strands. This mode of dimer formation is different from the "head-to-head" dimerization that existed in V(H)V(L) domains of antibodies or V domains of T cell receptors. As a result, the dimeric TREM-1 most likely contains two distinct ligand binding sites.  相似文献   

17.
In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small N-terminal domain. The solution structure of one of the N-terminal domains from Saccharomyces cerevisiae RNase HI, determined using NMR spectroscopy, is presented. The 46 residue motif comprises a three-stranded antiparallel beta-sheet and two short alpha-helices which pack onto opposite faces of the beta-sheet. Conserved residues involved in packing the alpha-helices onto the beta-sheet form the hydrophobic core of the domain. Three highly conserved and solvent exposed residues are implicated in RNA binding, W22, K38 and K39. The beta-beta-alpha-beta-alpha topology of the domain differs from the structures of known RNA binding domains such as the double-stranded RNA binding domain (dsRBD), the hnRNP K homology (KH) domain and the RNP motif. However, structural similarities exist between this domain and the N-terminal domain of ribosomal protein L9 which binds to 23 S ribosomal RNA.  相似文献   

18.
Human signaling lymphocytic activation molecule (SLAM; also known as CDw150) has been shown to be a cellular receptor for measles virus (MV). Chinese hamster ovary cells transfected with a mouse SLAM cDNA were not susceptible to MV and the vesicular stomatitis virus pseudotype bearing MV envelope proteins alone, indicating that mouse SLAM cannot act as an MV receptor. To determine the functional domain of the receptor, we tested the abilities of several chimeric SLAM proteins to function as MV receptors. The ectodomain of SLAM comprises the two immunoglobulin superfamily domains (V and C2). Various chimeric transmembrane proteins possessing the V domain of human SLAM were able to act as MV receptors, whereas a chimera consisting of human SLAM containing the mouse V domain instead of the human V domain no longer acted as a receptor. To examine the interaction between SLAM and MV envelope proteins, recombinant soluble forms of SLAM were produced. The soluble molecules possessing the V domain of human SLAM were shown to bind to cells expressing the MV hemagglutinin (H) protein but not to cells expressing the MV fusion protein or irrelevant envelope proteins. These results indicate that the V domain of human SLAM is necessary and sufficient to interact with the MV H protein and allow MV entry.  相似文献   

19.
The four approximately 75-residue domains (repeats) that constitute the annexin core structure all possess an identical five-alpha-helix bundle topology, but the physico-chemical properties of the isolated domains are different. Domain IV of the annexins has previously been expressed only as inclusion bodies, resistant to solubilisation. Analysis of the conserved, exposed hydrophobic residues of the four annexin domains reveals that domain IV contains the largest number of hydrophobic residues involved in interfacial contacts with the other domains. We designed five constructs of domain IV of annexin A2 in which several interfacial hydrophobic residues were substituted by hydrophilic residues. The mutant domain, in which all fully exposed hydrophobic interfacial residues were substituted, was isolated as a soluble protein. Circular dichroism measurements indicate that it harbours a high content of alpha-helical secondary structure and some tertiary structure. The CD-monitored (lambda=222 nm) thermal melting profile suggests a weak cooperative transition. Nuclear magnetic resonance (1H-15N) correlation spectroscopy reveals heterogeneous line broadening and an intermediate spectral dispersion. These properties are indicative of a partially folded protein in which some residues are in a fairly structured conformation, whereas others are in an unfolded state. This conclusion is corroborated by 1-anilinonaphthalene-8-sulfonate fluorescence (ANS) analyses. Surface plasmon resonance measurements also indicate that this domain binds heparin, a known ligand of domain IV in the full-length annexin A2, although with lower affinity.  相似文献   

20.
The oleosins are a group of hydrophobic proteins present on the surface of oil bodies in seeds, where they are thought to prevent coalescence. They contain a central hydrophobic domain of 68-74 residues that is thought to form a loop into the triacylglycerol matrix of the oil body, but the conformation adopted by this sequence is uncertain. We have therefore expressed an oleosin cDNA from sunflower (Helianthus annuus L.) in Escherichia coli as a fusion with maltose-binding protein (MBP) and isolated a peptide corresponding to the hydrophobic domain by sequential digestion with factor Xa (to remove the MBP) followed by trypsin and Staphylococcus V8 protease to remove the N- and C-terminal domains of the oleosin. Circular dichroism spectroscopy of the peptide in two solvent systems chosen to mimic the environment within the oil body (trifluoroethanol and SDS) demonstrated high proportions of alpha-helical structure, with no beta-sheet. A model was therefore developed in which the domain forms an alpha-helical hairpin structure, the two helices being separated by a turn region. We consider that this model is consistent with our current knowledge of oleosin structure and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号