首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senescence and epigenetic dysregulation in cancer   总被引:4,自引:0,他引:4  
Mammalian cells have a finite proliferative lifespan, at the end of which they are unable to enter S phase in response to mitogenic stimuli. They undergo morphological changes and synthesize an altered repertoire of cell type-specific proteins. This non-proliferative state is termed replicative senescence and is regarded as a major tumor suppressor mechanism. The ability to overcome senescence and obtain a limitless replicative potential is called immortalization, and considered to be one of the prerequisites of cancer formation. While senescence mainly represents a genetically governed process, epigenetic changes in cancer have received increasing attention as an alternative mechanism for mediating gene expression changes in transformed cells. DNA methylation of promoter-containing CpG islands has emerged as an epigenetic mechanism of silencing tumor suppressor genes. New insights are being gained into the mechanisms causing aberrant methylation in cancer and evidence suggests that aging is accompanied by accumulation of cells with aberrant CpG island methylation. Aberrant methylation may contribute to many of the physiological and pathological changes associated with aging including tumor development. Finally, we describe how genes involved in promoting longevity might inhibit pathways promoting tumorigenesis.  相似文献   

2.
3.
Polymerase chain reaction-based methods of DNA methylation analysis   总被引:6,自引:0,他引:6  
DNA methylation is the main epigenetic modification in humans, and changes in methylation patterns play an important role in tumorigenesis. Hypermethylation of normally unmethylated CpG islands in the promoter regions often occurs in important tumor suppressor genes, DNA repair genes, and metastasis inhibitor genes. The changes of methylation status of various gene promoters seem to be a common feature of malignant cells and these changes can occur early in the progression process. Therefore detection of aberrant promoter hypermethylation of cancer-related genes may be useful for cancer diagnosis or detection of cancer recurrence. The purpose of this review is to provide a summary of the most commonly used techniques for the study of DNA methylation. Current scientific literature involving methylation detection methods was reviewed with an emphasis on polymerase chain reaction (PCR)-based detection methods. The current methodologies may be broadly classed into PCR-based methylation assays and non-PCR-based methylation assays. The problems and advantages of the different methods for detecting aberrant methylation are discussed. As the number of genes known to be hypermethylated in cancer is growing, the detection of aberrant promoter region methylation will be a promising approach for using DNA-based markers for the early detection of human cancers. Many techniques, especially PCR-based methylation assay techniques, make it practical to use these new methylation biomarkers in early cancer diagnosis.  相似文献   

4.
5.
6.
7.
Aberrant methylation of CpG-dense islands in the promoter regions of genes is an acquired epigenetic alteration associated with the silencing of tumor suppressor genes in human cancers. In a screen for endogenous targets of methylation-mediated gene silencing, we identified a novel CpG island-associated gene, TMS1, which is aberrantly methylated and silenced in response to the ectopic expression of DNA methyltransferase-1. TMS1 functions in the regulation of apoptosis and is frequently methylated and silenced in human breast cancers. In this study, we characterized the methylation pattern and chromatin architecture of the TMS1 locus in normal fibroblasts and determined the changes associated with its progressive methylation. In normal fibroblasts expressing TMS1, the CpG island is defined by an unmethylated domain that is separated from densely methylated flanking DNA by distinct 5' and 3' boundaries. Analysis of the nucleoprotein architecture of the locus in intact nuclei revealed three DNase I-hypersensitive sites that map within the CpG island. Strikingly, two of these sites coincided with the 5'- and 3'-methylation boundaries. Methylation of the TMS1 CpG island was accompanied by loss of hypersensitive site formation, hypoacetylation of histones H3 and H4, and gene silencing. This altered chromatin structure was confined to the CpG island and occurred without significant changes in methylation, histone acetylation, or hypersensitive site formation at a fourth DNase I-hypersensitive site 2 kb downstream of the TMS1 CpG island. The data indicate that there are sites of protein binding and/or structural transitions that define the boundaries of the unmethylated CpG island in normal cells and that aberrant methylation overcomes these boundaries to direct a local change in chromatin structure, resulting in gene silencing.  相似文献   

8.
9.
Most investigations on the role of DNA methylation in cancer have focused on epigenetic changes associated with known tumor suppressor genes. This may have led to an underestimation of the number of CpG islands altered by DNA methylation, since it is possible that a subset of unknown genes relevant to cancer development may preferentially be affected by epigenetic rather than genetic means and would not be identified as familial deletions, mutations, or loss of heterozygosity. We used a recently developed screening procedure (methylation-sensitive arbitrarily primed-polymerase chain reaction to scan genomic DNA for CpG islands methylated in white blood cells (WBCs) and in tumor tissues. DNA methylation pattern analysis showed little interindividual differences in the WBCs and normal epithelium (adjacent to colon, bladder, and prostate cancer cells), but with some tissue-specific differences. Cancer cells showed marked methylation changes that varied considerably between different tumors, suggesting variable penetrance of the methylation phenotype in patients. Direct sequencing of 8 of 45 bands altered in these cancers showed that several of them were CpG islands, and 2 of these sequences were identified in GenBank. Surprisingly, three of the bands studied corresponded to transcribed regions of genes. Thus, hypermethylation of CpG islands in cancer cells is not confined to the promoters of growth regulatory genes but is also found in actively transcribed regions.  相似文献   

10.
11.
12.
13.
DNA deaminases of the Aid/Apobec family convert cytosine into uracil and play key roles in acquired and innate immunity. The epigenetic modification by methylation of cytosine in CpG dinucleotides is also mutagenic, but this is thought to occur by spontaneous deamination. Here we show that Aid and Apobec1 are 5-methylcytosine deaminases resulting in a thymine base opposite a guanine. Their action can thus lead to C --> T transition mutations in methylated DNA, or in conjunction with repair of the T:G mismatch, to demethylation. The Aid and Apobec1 genes are located in a cluster of pluripotency genes including Nanog and Stella and are co-expressed with these genes in oocytes, embryonic germ cells, and embryonic stem cells. These results suggest that Aid and perhaps some of its family members may have roles in epigenetic reprogramming and cell plasticity. Transition in CpG dinucleotides is the most frequent mutation in human genetic diseases, and sequence context analysis of CpG transitions in the APC tumor suppressor gene suggests that DNA deaminases may play a significant role in tumor etiology.  相似文献   

14.
15.
DNA motifs associated with aberrant CpG island methylation   总被引:5,自引:0,他引:5  
Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.  相似文献   

16.
DNA methylation in prostate cancer   总被引:7,自引:0,他引:7  
Prostate cancer is the most common malignancy and the second leading cause of cancer death among men in the United States. There are three well-established risk factors for prostate cancer: age, race and family history. The molecular bases for these risk factors are unclear; however, they may be influenced by epigenetic events. Epigenetic events covalently modify chromatin and alter gene expression. Methylation of cytosine residues within CpG islands on gene promoters is a primary epigenetic event that acts to suppress gene expression. In tumorigenesis, the normal functioning of the epigenetic-regulatory system is disrupted leading to inappropriate CpG island hypermethylation and aberrant expression of a battery of genes involved in critical cellular processes. Cancer-dependent epigenetic regulation of genes involved in DNA damage repair, hormone response, cell cycle control and tumor-cell adhesion/metastasis can contribute significantly to tumor initiation, progression and metastasis and, thereby, increase prostate cancer susceptibility and risk. In this review, we will discuss current research on genes that are hypermethylated in human prostate cancer. We will also discuss the potential involvement of DNA methylation in age-related, race-related and hereditary prostate cancer, and the potential use of hypermethylated genes as biomarkers to detect prostate cancer and assess its risk.  相似文献   

17.
CpG岛是人类基因组中富含CpG二核苷酸的DNA序列,主要位于基因启动子区,大小约为100-1000bp,与约60%编码基因相关。DNA中CpG岛甲基化可导致抑癌基因的表观遗传学转录失活,直接参与肿瘤的发生机制。近年来,甲基化已成为表观遗传学研究的焦点。我们简要综述了DNA甲基化在结直肠癌中的研究进展。  相似文献   

18.
19.
20.
ABSTRACT: Cervical cancer (CC) is one of the most malignant tumors and the second or third most common type of cancer in women worldwide. The association between human papillomavirus (HPV) and CC is widely known and accepted (99.7% of cases). At present, the pathogenesis mechanisms of CC are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic alterations. In the past, it was generally thought that genetic mutation was a key event of tumor pathogenesis, especially somatic mutation of tumor suppressor genes. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in DNA sequence. Specific epigenetic processes include DNA methylation, chromotin remodeling, histone modification, and microRNA regulations. These alterations, in combination or individually, make it possible to establish the methylation profiles, histone modification maps, and expression profiles characteristic of this pathology, which become useful tools for screening, early detection, or prognostic markers in cervical cancer. This paper reviews recent epigenetics research progress in the CC study, and tries to depict the relationships between CC and DNA methylation, histone modification, as well as microRNA regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号