首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Squalius alburnoides is a complex of minnows common to the Iberian Peninsula, consisting of two distinct forms. The most common form is comprised of diploid and polyploid asexual hybrids heterozygous for several diagnostic allozyme loci contributed by Squalius pyrenaicus or Squalius carolitertii and a missing ancestor. The other form is diploid and homozygous for the allele contributed by the missing ancestor at these same loci. Present results from analyses of sex ratio and cytochrome b sequences are not consistent with the evolutionary distinctiveness of this non-hybrid form and suggest that it represents an all-male lineage imbedded within an almost all-female complex. This all-male lineage allowed preservation of the ancestral paternal nuclear genome after the paternal ancestor became extinct in all or most drainages, withimportant evolutionary implications.  相似文献   

2.
Several studies have demonstrated the hybrid origin of Squalius alburnoides , a complex of diploid, triploid and tetraploid fish, with Squalius pyrenaicus as the maternal ancestor and an Anaecypris hispanica -like species as the paternal ancestor. The aim of this study was to assess patterns of genetic diversity and similarity between sympatric forms of the different ploidy levels of S. alburnoides and related parental species in the two largest basins that are part of its southern Iberian distribution, the Tejo and Guadiana, using microsatellites. High levels of genetic diversity were found in populations of S. alburnoides from both basins, reflecting the hybrid origin, the high diversity of forms in these river basins and the different modes of reproduction of the complex. Microsatellites indicated low values of genetic differentiation between the non-hybrid all-male form of S. alburnoides and A. hispanica , supporting the view that these forms share a common ancestor. In some instances, diploid and triploid hybrids from the same river basin were more closely related to each other than to their counterparts in the other basins, suggesting an ancient origin for the complex in these Iberian southern basins.  相似文献   

3.
Squalius alburnoides is a widely distributed intergeneric hybrid complex with fish of both sexes, varying ploidy levels and proportions of the parental genomes. Its dispersal routes were here delineated and framed by the reconstruction of the phylogeny and phylogeography of other Squalius with which it hybridizes, based on the available data on the paleohydrographical history of the Iberian Peninsula. Results based on sequences of cytochrome b and beta-actin genes showed that: proto-Squalius pyrenaicus originated at least five species as it dispersed throughout the Iberian Peninsula in the Mio-Pliocene; the S. alburnoides complex likely had a single origin in the bulk of Iberia, in the Upper Tagus/Guadiana area, when hydrographical rearrangements allowed the contact between its ancestors (around 700,000 years ago); interspecific crosses allowed the introgression of mitochondrial and nuclear genes of S. alburnoides in allopatric species/populations of other Squalius and vice-versa; and reconstituted S. alburnoides non-hybrid males may contribute to the replacement of the typical mtDNA of the complex (in the populations where they occur, crosses with females of other Squalius seem to have been especially frequent). A number of dispersal events and colonization routes are proposed.  相似文献   

4.
The karyotype of the endangered fish Anaecypris hispanica was revisited using advanced cytogenetic techniques to elucidate its putative relationship with the paternal ancestor of the hybrid complex Squalius alburnoides and to clarify some of the recently described cytogenetic patterns of the complex. The results of chromomycin A3 and Ag staining, as well as fluorescent in situ hybridization with 28S and 5S rDNA and the (TTAGGG)n telomeric probes, were compared with the patterns observed in specimens of the all-male nonhybrid lineage of S. alburnoides complex, which is considered to reconstitute the nuclear genome of the probably extinct paternal ancestor. Several cytogenetic features observed in A. hispanica specimens were indeed shared by S. alburnoides nuclear nonhybrid males, supporting the hypothesis of a close evolutionary link between A. hispanica and the paternal ancestor of the complex. The genomic rearrangements involving 28S rDNA sites previously described in the S. alburnoides complex and in its maternal ancestor (S. pyrenaicus) were not detected in A. hispanica; they are, therefore, probably due to mechanisms related to hybridization and polyploidy.  相似文献   

5.
Iberian minnows collectively known as the Tropidophoxinellus alburnoides STEINDACHNER complex comprise diploid and polyploid forms with highly female biased sex ratios. Previous investigators suggested that all-female clonal reproduction and interspecific hybridization may occur in this complex. We examined nuclear (allozymes) and cytoplasmic genes (mtDNA) to assess the evolutionary origins, relationships, and reproductive modes of T. alburnoides from western Spain. The multi-locus allozyme data clearly revealed the hybrid nature of all polyploid forms of this fish and some diploid forms as well. Diagnostic markers identified fish from the genus Leuciscus as the paternal ancestor of hybrids in the Duero and Guadiana River Basins. Additionally, analysis of nuclear markers revealed that hybridogenetic reproduction occurs in the diploid and triploid hybrids. The hybrids fully express the paternal Leuciscus genome and then discard it during oogenesis. Hybridogenetic ova contain only maternal nuclear genes and mtDNA from a non-hybrid T. alburnoides ancestor. Apparently diploid and triploid hybrids of T. alburnoides persist as sperm parasites on males of a sexually reproducing Leuciscus host species.  相似文献   

6.
The first occurrence of massive mitochondrial introgression of Squalius aradensis genes in Squalius alburnoides , a hybridogenetic complex that usually carries mtDNA of its maternal ancestor ( Squalius pyrenaicus ) is reported. Possible implications of such introgressions for the history of the complex are discussed.  相似文献   

7.
Pala I  Coelho MM 《Gene》2005,347(2):283-294
The Squalius alburnoides complex, of hybrid origin, comprises diploid, triploid and tetraploid forms and has a widespread distribution in the Iberian waters. The southern populations of this complex, sympatric with S. pyrenaicus, show high genetic variability, diversity of forms and reproductive modes which create pathways that may allow for the establishment of a new species in the future. Here we report a contrasting view over the S. alburnoides complex: in the Mondego River basin (northern Portugal), nuclear "non-hybrid" and tetraploid forms are absent and a clearly impoverished genetic diversity is observed, contributing to a general scarcity of possibilities of generating novel genetic material. Moreover, the bisexual species involved in the maintenance of the complex in this basin (S. carolitertii) exhibits a considerably lower genetic variability, when compared with S. pyrenaicus. The observed differences suggest that, despite being originated by similar hybridization events and maintained by analogous reproductive mechanisms, different populations of the complex were exposed to distinct evolutionary constrains, which in some cases resulted in diversification and speciation while in others led to a compromising situation in terms of evolutionary potential. Additionally, and for the first time all forms were used in the calculation of genetic distances and diversity indices, widening the possibilities of analysis of the complex by allowing the inclusion of a large part of the available data, irrespective of ploidy level.  相似文献   

8.
Despite a number of recent studies that have focused on the origin of domestic horses, genetic relationships between major geographical clusters still remain poorly understood. In this study we analyzed a 296 bp mtDNA fragment from the HVI region of 171 horses representing 11 native Iberian, Barb, and Exmoor breeds to assess the maternal phylogeography of Iberian horses. The mtDNA haplogroup with a CCG motif (nucleotide position 15,494 to 15,496) was the most frequent in Iberian and Barb breeds (0.42 and 0.57, respectively), regardless of geographic location or group of breeds. This finding supports the close genetic relationship between the ancestral mare populations of the Iberian Peninsula and Northern Africa. Phenotypic differences among the Northern and Southern Iberian groups of breeds are not explained by population subdivision based on maternal lineages. Our results also suggest that Northern Iberian ponies--which are phenotypically close to British ponies, especially Exmoor--are the result of an introgression rather than population replacement.  相似文献   

9.
Natural hybrids between the boreal species Hexagrammos octogrammus and two temperate species Hexagrammos agrammus and Hexagrammos otakii were observed frequently in southern Hokkaido, Japan. Previous studies revealed that H. octogrammus is a maternal ancestor of both hybrids; the hybrids are all fertile females and they frequently breed with paternal species. Although such rampant hybridization occurs, species boundaries have been maintained in the hybrid zone. Possible explanations for the absence of introgressions, despite the frequent backcrossing, might include clonal reproduction: parthenogenesis, gynogenesis and hybridogenesis. The natural hybrids produced haploid eggs that contained only the H. octogrammus genome (maternal ancestor) with discarded paternal genome and generated F1‐hybrid type offspring by fertilization with the haploid sperm of H. agrammus or H. otakii (paternal ancestor). This reproductive mode was found in an artificial backcross hybrid between the natural hybrid and a male of the paternal ancestor. These findings indicate that the natural hybrids adopt hybridogenesis with high possibility and produce successive generations through hybridogenesis by backcrossing with the paternal ancestor. These hybrids of Hexagrammos represent the first hybridogenetic system found from marine fishes that widely inhabit the North Pacific Ocean. In contrast with other hybridogenetic systems, these Hexagrammos hybrids coexist with all three ancestral species in the hybrid zone. The coexistence mechanism is also discussed.  相似文献   

10.
Origins and biogeography of the chub, genus Squalius (formerly within the genus Leuciscus), in the Iberian Peninsula were inferred from comparison between patterns of geographic distribution and phylogenetic relationships among populations belonging to 14 European Squalius species. The phylogeny recovered was based on the complete sequence of the mitochondrial cytochrome b gene. Squalius species were grouped into three major clades. The basal clade included species distributed across the ancient Paratethys Sea. The second clade included species from Central and East Europe and the northern areas of the Mediterranean basin towards Minor Asia. The third clade included species from the Mediterranean Peninsulas (Iberian, Italy, and Balkans). The Iberian Squalius species do not constitutes a monophyletic group. Our data indicate that the Iberian Peninsula was colonized at least twice by two different monophyletic lineages, a meridional group and a Central Europe group. The amount of species diversity found in the Iberian Peninsula and the phylogenetic relationships among these species, together with their geographic distribution, suggest that the Central Europe lineage colonized the Iberian Peninsula at a latter time. Our data indicate that the northeastern Iberian lineage is phylogenetically close to Greek populations of Squalius cephalus, while the second lineage formed a monophyletic group including Squalius pyrenaicus, Squalius carolitertii, Squalius aradensis, and Squalius torgalensis. The speciation process that generated these species and the geographic structure of their populations, principally in S. pyrenaicus, can be attributed to paleogeographical events like the ancient endorrheism and the development of hydrographic basins.  相似文献   

11.
The taxonomy of the genus Leuciscus in the Iberian Peninsula has been presented on the basis of morphological analysis. Two species are believed to occur in Portuguese inland waters, L. carolitertii , the northern basins chub, and L. pyrenaicus , which was described for the Tejo and southern basins. Since only slight differences in the meristic and morphometric characters are observed, the distinction between the two species has been made previously mainly on the basis of osteology. In order to investigate the patterns of genetic differentiation between these species, 24 sites were sampled for both species, and examined electrophoretically for the study of variation at 27 presumptive loci. The results pointed to different levels of population differentiation among drainages and support the recognition of the species level for L. pyrenaicus and L. carolitertii. Our results also suggested that the distribution area of L. pyrenaicus is probably restricted to Tejo and to the small drainages near Tejo, while L. carolitertii seems to have a widespread distribution area, including Lima, Douro, Vouga, Mondego, Guadina and Sado drainages. Moreover, concerning the southern populations, Mira and Arade, the surprisingly high level of differentiation observed at several loci, supports the existence of a further species occurring in these small drainages. The evolutionary aspects related to that differentiation are discussed.  相似文献   

12.
The endemic Iberian minnow Squalius alburnoides is a complex of fishes of hybrid origin including both males and females with distinct ploidy levels and varying proportions of the parental genomes. In this paper we demonstrated that in contrast to many vertebrate hybrid lineages the sperm of triploid hybrid males of S. alburnoides is viable and fully functional. Flow cytometry and analysis of sequences of a fragment of the beta-actin nuclear gene applied to progenitors and offspring evidenced that these males produced their sperm clonally, as already described for diploid hybrids. The presence of different types of fertile males (nonhybrid diploids with normal meiosis and both diploid and triploid hybrids) coupled with hybridogenetic meiosis in females endows this vertebrate complex with a high level of independence from other species and contributes to maintain its genetic variability.  相似文献   

13.
Reconstruction of the evolutionary history of asexual lineages undermines their suitability as models for the studies of evolutionary consequences of sexual reproduction. Using molecular tools we addressed the origin, age and maternal ancestry of diploid and triploid asexual lineages arisen through the hybridization between spiny loaches Cobitis elongatoides, C. taenia and C. tanaitica. Reconstructions of the phylogenetic relationships among mitochondrial DNA (mtDNA) haplotypes, revealed by sequence analyses, suggest that both hybrid complexes (C. elongatoides-taenia and C. elongatoides-tanaitica) contained several asexual lineages of independent origin. Cobitis elongatoides was the exclusive maternal ancestor of all the C. elongatoides-tanaitica hybrids, whereas within the C. elongatoides-taenia complex, hybridization was reciprocal. In both complexes the low haplotype divergences were consistent with a recent origin of asexual lineages. Combined mtDNA and allozyme data suggest that the triploids arose through the incorporation of a haploid sperm genome into unreduced ova produced by diploid hybrids.  相似文献   

14.
Domestic horses represent a genetic paradox: although they have the greatest number of maternal lineages (mtDNA) of all domestic species, their paternal lineages are extremely homogeneous on the Y-chromosome. In order to address their huge mtDNA variation and the origin and history of maternal lineages in domestic horses, we analyzed 1961 partial d-loop sequences from 207 ancient remains and 1754 modern horses. The sample set ranged from Alaska and North East Siberia to the Iberian Peninsula and from the Late Pleistocene to modern times. We found a panmictic Late Pleistocene horse population ranging from Alaska to the Pyrenees. Later, during the Early Holocene and the Copper Age, more or less separated sub-populations are indicated for the Eurasian steppe region and Iberia. Our data suggest multiple domestications and introgressions of females especially during the Iron Age. Although all Eurasian regions contributed to the genetic pedigree of modern breeds, most haplotypes had their roots in Eastern Europe and Siberia. We found 87 ancient haplotypes (Pleistocene to Mediaeval Times); 56 of these haplotypes were also observed in domestic horses, although thus far only 39 haplotypes have been confirmed to survive in modern breeds. Thus, at least seventeen haplotypes of early domestic horses have become extinct during the last 5,500 years. It is concluded that the large diversity of mtDNA lineages is not a product of animal breeding but, in fact, represents ancestral variability.  相似文献   

15.
Phoxinus eos-neogaeus unisexual hybrids (Cyprinidae, Pisces) are among the few vertebrate taxa known to reproduce clonally by gynogenesis. These taxa have a broad distribution in North America, mostly located in regions previously covered by the last Pleistocene ice sheet. To assess whether asexual hybrids dispersed from glacial refuges at the end of the Pleistocene or they originated from current hybridization events, genetic diversity of mitochondrial DNA (mtDNA) sequences and microsatellite loci was determined in populations from 16 different sites in the Mississippi-Missouri River (Nebraska and Montana), Rainy River-Hudson Bay (Minnesota), and St Lawrence River (Quebec) drainages. The maternal species (P. neogaeus) occurred in Minnesota and Nebraska but was absent from Montana sites and was restricted to only two of 11 lakes sampled in Quebec, although hybrids were present at all sites. The genetic survey revealed a total of 49 clones, originating from 14 hybridization events. Several of the lineages were characterized by mtDNA haplotypes not detected in the maternal ancestor. Lineages as well as clones frequently displayed a large geographical distribution at a regional scale. Dating of hybridization events suggested a relatively recent origin (<50,000 years ago) from the Mississippi glacial refuge, even in regions not covered by the last Pleistocene glacier. Altogether, these results indicate P. eos-neogaeus hybrids are not the result of current hybridization events, but display a pattern predicted by postglacial dispersal. Our findings have considerable implications for the nature of selection processes affecting the diversity of these asexual taxa and their coexistence with sexual ancestors.  相似文献   

16.
P. D. Rawson  C. L. Secor    T. J. Hilbish 《Genetics》1996,144(1):241-248
Blue mussels in the Mytilus edulis species complex have a doubly uniparental mode of mtDNA inheritance with separate maternal and paternal mtDNA lineages. Female mussels inherit their mtDNA solely from their mother, while males inherit mtDNA from both parents. In the male gonad the paternal mtDNA is preferentially replicated so that only paternal mtDNA is transmitted from fathers to sons. Hybridization is common among differentiated blue mussel taxa; whenever it involves M. trossulus, doubly uniparental mtDNA inheritance is disrupted. We have found high frequencies of males without and females with paternal mtDNA among hybrid mussels produced by interspecific matings between M. galloprovincialis and M. trossulus. In contrast, hybridization between M. galloprovincialis and M. edulis does not affect doubly uniparental inheritance, indicating a difference in the divergence of the mechanisms regulating mtDNA inheritance among the three blue mussel taxa. Our data indicate a high frequency of disrupted mtDNA transmission in F(1) hybrids and suggest that two separate mechanisms, one regulating the transmission of paternal mtDNA to males and another inhibiting the establishment of paternal mtDNA in females, act to regulate doubly uniparental inheritance. We propose a model for the regulation of doubly uniparental inheritance that is consistent with these observations.  相似文献   

17.
Polyploidy, hybridization and variation in mating systems are central issues for a deeper understanding of animal evolution. The Iberian species Squalius alburnoides represents an example combining all three phenomena. Previous studies showed that S. alburnoides populations are mainly composed of triploid and diploid hybrid forms (mainly females), and that the tetraploid forms are rare or absent. Both populations from the Douro drainage reveal a distinct scenario: tetraploid individuals represent 85.6-97.5% of the population, with no sex ratio bias observed. Based on the flow cytometry measurements of blood and spermatozoa cells, microsatellite loci and experimental crosses, we describe here, for the first time, two symmetric allotetraploid populations (CCAA) that resumed normal meiosis after undergoing intermediate processes of non-sexual reproduction to give rise to a new sexually reproducing polyploid species. Prezygotic (habitat selection and assortative mating) and postzygotic mechanisms (nonviable embryos) are responsible for the reproductive isolation from other forms of the S. alburnoides complex (e.g. CA, CAA). This example illustrates how hybrid polyploid complexes may lead to speciation.  相似文献   

18.
Summary. The non-Mendelian inheritance of organellar DNA is common in most plants and animals. In the isogamous green alga Chlamydomonas species, progeny inherit chloroplast genes from the maternal parent, as paternal chloroplast genes are selectively eliminated in young zygotes. Mitochondrial genes are inherited from the paternal parent. Analogically, maternal mitochondrial DNA (mtDNA) is thought to be selectively eliminated. Nevertheless, it is unclear when this selective elimination occurs. Here, we examined the behaviors of maternal and paternal mtDNAs by various methods during the period between the beginning of zygote formation and zoospore formation. First, we observed the behavior of the organelle nucleoids of living cells by specifically staining DNA with the fluorochrome SYBR Green I and staining mitochondria with 3,3′-dihexyloxacarbocyanine iodide. We also examined the fate of mtDNA of male and female parental origin by real-time PCR, nested PCR with single zygotes, and fluorescence in situ hybridization analysis. The mtDNA of maternal origin was completely eliminated before the first cell nuclear division, probably just before mtDNA synthesis, during meiosis. Therefore, the progeny inherit the remaining paternal mtDNA. We suggest that the complete elimination of maternal mtDNA during meiosis is the primary cause of paternal mitochondrial inheritance. Correspondence and reprints: Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 901-0213, Japan.  相似文献   

19.
Previous research has shown that members of the unisexual hybrid complex of the genus Ambystoma possess a mitochondrial genome that is unrelated to their nuclear parental species, but the origin of this mitochondrion has remained unclear. We used a 744-bp fragment of the mitochondrial gene cytochrome b within a comparative phylogenetic framework to infer the maternal ancestor of this unisexual lineage. By examining a broader range of species than has previously been compared, we were able to uncover a recent maternal ancestor to this complex. Unexpectedly, Ambystoma barbouri, a species whose nuclear DNA has not been identified in the unisexuals, was found to be the recent maternal ancestor of the individuals examined through the discovery of a shared mtDNA haplotype between the unisexuals and A. barbouri. Based on a combination of sequence data and glacial patterning, we estimate that the unisexual lineage probably originated less than 25 000 years ago. In addition, all unisexuals examined showed extremely similar mtDNA sequences and the resultant phylogeny was consistent with a single origin for this lineage. These results confirm previous suggestions that the unisexual Ambystoma complex was formed from a hybridization event in which the nuclear DNA of the original maternal species was subsequently lost.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号