首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigate the possible role of ephrin-Eph signaling in trigeminal motor axon projections. We find that EphA receptors are expressed at higher levels by rhombomere 2 (r2) trigeminal motor neurons than by r3 trigeminal motor neurons in the chick embryo. Mapping of rhombomere-specific axon projections shows that r2 and r3 trigeminal motor neurons project to different muscle targets, including the mandibular adductor and the intermandibularis muscles respectively. Ephrin-A5 is expressed in these muscles, especially in some regions of the intermandibularis muscle, and can cause growth cone collapse of both r2 and r3 motor axons in vitro. We demonstrate that in vivo overexpression of ephrin-A5 in the intermandibularis muscle, or overexpression of dominant-negative EphA receptors in trigeminal motor neurons leads to a reduction in branching of r3-derived motor axons specifically. Overexpression of full-length EphA receptors impairs the formation of r3 projections to the intermandibularis muscle. These findings indicate that ephrins and their Eph receptors play a role in trigeminal motor axon topographic mapping and in rhombomere 3-derived projections in particular.  相似文献   

2.
The establishment of topographic maps of neuronal connections is believed to involve graded repulsion mediated by EphA receptors and ephrin-A ligands. Gene knockouts show that ephrin-A ligands do indeed have a crucial role in mapping, and that mechanisms in addition to graded repulsion must also be at work.  相似文献   

3.
In the embryonic visual system, EphA receptors are expressed on both temporal and nasal retinal ganglion cell axons. Only the temporal axons, however, are sensitive to the low concentrations of ephrin-A ligands found in the anterior optic tectum. The poor responsiveness of nasal axons to ephrin-A ligands, which allows them to traverse the anterior tectum and reach their targets in the posterior tectum, has been attributed to constitutive activation of the EphA4 receptor expressed in these axons. EphA4 is highly expressed throughout the retina, but is preferentially phosphorylated on tyrosine (activated) in nasal retina. In a screen for EphA4 ligands expressed in chicken embryonic retina, we have identified a novel ephrin, ephrin-A6. Like ephrin-A5, ephrin-A6 has high affinity for EphA4 and activates this receptor in cultured retinal cells. In the embryonic day 8 (E8) chicken visual system, ephrin-A6 is predominantly expressed in the nasal retina and ephrin-A5 in the posterior tectum. Thus, ephrin-A6 has the properties of a ligand that activates the EphA4 receptor in nasal retinal cells. Ephrin-A6 binds with high affinity to several other EphA receptors as well and causes growth cone collapse in retinal explants, demonstrating that it can elicit biological responses in retinal neurons. Ephrin-A6 expression is high at E6 and E8, when retinal axons grow to their tectal targets, and gradually declines at later developmental stages. The asymmetric distribution of ephrin-A6 in retinal cells, and the time course of its expression, suggest that this new ephrin plays a role in the establishment of visual system topography.  相似文献   

4.
Ephrin-as guide the formation of functional maps in the visual cortex   总被引:4,自引:0,他引:4  
Ephrin-As and their receptors, EphAs, are expressed in the developing cortex where they may act to organize thalamic inputs. Here, we map the visual cortex (V1) in mice deficient for ephrin-A2, -A3, and -A5 functionally, using intrinsic signal optical imaging and microelectrode recording, and structurally, by anatomical tracing of thalamocortical projections. V1 is shifted medially, rotated, and compressed and its internal organization is degraded. Expressing ephrin-A5 ectopically by in utero electroporation in the lateral cortex shifts the map of V1 medially, and expression within V1 disrupts its internal organization. These findings indicate that interactions between gradients of EphA/ephrin-A in the cortex guide map formation, but that factors other than redundant ephrin-As are responsible for the remnant map. Together with earlier work on the retinogeniculate map, the current findings show that the same molecular interactions may operate at successive stages of the visual pathway to organize maps.  相似文献   

5.
Evidence is accumulating that Eph receptor tyrosine kinases and their ligands regulate cell migration and axonal guidance during development. It was previously found that one of the Eph receptors, EphA4, is transiently expressed in subsets of chick embryonic motor neurons. Here, the expression of EphA and ephrin-A subfamily members was further examined, and the dynamic patterns of expression in chick embryonic motor neurons found. EphA3, EphA4, ephrin-A2, and ephrin-A5 were also expressed in the connective tissues of limb muscles and EphA3 and EphA4 expressing motor neurons innervated EphA3 and EphA4 expressing limb muscles, respectively. These spatiotemporal expression patterns suggest that EphA and ephrin-A proteins play important roles in muscle patterning and motor axonal guidance.  相似文献   

6.
Torii M  Levitt P 《Neuron》2005,48(4):563-575
Molecular mechanisms generating the topographic organization of corticothalamic (CT) circuits, which comprise more than three-quarters of the synaptic inputs onto sensory relay neurons, and their interdependence with thalamocortical (TC) axon development are unknown. Using in utero electroporation-mediated gene transfer, we show that EphA7-mediated signaling on neocortical axons controls the within-nucleus topography of CT projections in the thalamus. Notably, CT axons that mis-express EphA7 do not shift the relative positioning of their pathway within the subcortical telencephalon (ST), indicating that they do not depend upon EphA7/ephrin-A signaling in the ST for establishing this topography. Moreover, mis-expression of cortical EphA7 results in disrupted topography of CT projections, but unchanged inter- and intra-areal topography of TC projections. Our results support a model in which EphA/ephrin-A signaling controls independently the precision with which CT and TC projections develop, yet is essential for establishing their topographic reciprocity.  相似文献   

7.
Motor axon projections are topographically ordered. Medial motor column axons project to axial muscles, whereas lateral motor column axons project to limb muscles and, along the rostrocaudal axis of the animal, the more rostral motor neuron pools project to more rostral muscle targets. We have shown that EphA3 is specifically expressed in the developing medial motor column and have postulated that EphA3 might be responsible for directing their axons to axial muscle targets. This hypothesis was supported by our demonstration that EphA3 can direct retinal ganglion cell axon targeting and by studies of ephrin-A5(-/-) mutants that show that EphA receptor signaling controls the topographic innervation of the acromiotrapezius. To test the role of EphA3 in motor axon guidance, we generated an EphA3 null mutant. Retrograde labeling studies in EphA3(-/-) embryos and adults indicate that, contrary to our predictions, EphA3 is not necessary to direct motor axons to axial muscle targets. Our results also demonstrate that ephrin A5's ability to direct topographic innervation of the acromiotrapezius must be mediated through EphA receptors other than, or in addition to, EphA3.  相似文献   

8.
Kania A  Jessell TM 《Neuron》2003,38(4):581-596
The formation of topographic neural maps relies on the coordinate assignment of neuronal cell body position and axonal trajectory. The projection of motor neurons of the lateral motor column (LMC) along the dorsoventral axis of the limb mesenchyme constitutes a simple topographic map that is organized in a binary manner. We show that LIM homeodomain proteins establish motor neuron topography by coordinating the mediolateral settling position of motor neurons within the LMC with the dorsoventral selection of axon pathways in the limb. These topographic projections are established, in part, through LIM homeodomain protein control of EphA receptors and ephrin-A ligands in motor neurons and limb mesenchymal cells.  相似文献   

9.
A role for the EphA family in the topographic targeting of vomeronasal axons   总被引:10,自引:0,他引:10  
We have investigated the role of the Eph family of receptor tyrosine kinases and their ligands in the establishment of the vomeronasal projection in the mouse. Our data show intriguing differential expression patterns of ephrin-A5 on vomeronasal axons and of EphA6 in the accessory olfactory bulb (AOB), such that axons with high ligand concentration project onto regions of the AOB with high receptor concentration and vice versa. These data suggest a mechanism for development of this projection that is the opposite of the repellent interaction between Eph receptors and ligands observed in other systems. In support of this idea, when given the choice of whether to grow on lanes containing EphA-F(c)/laminin or F(c)/laminin protein (in the stripe assay), vomeronasal axons prefer to grow on EphA-F(c)/laminin. Analysis of ephrin-A5 mutant mice revealed a disturbance of the topographic targeting of vomeronasal axons to the AOB. In summary, these data, which are derived from in vitro and in vivo experiments, indicate an important role of the EphA family in setting up the vomeronasal projection.  相似文献   

10.
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.  相似文献   

11.
Topographic maps are a fundamental feature of sensory representations in nervous systems. The formation of one such map, defined by the connection of ganglion cells in the retina to their targets in the superior colliculus of the midbrain, is thought to depend upon an interaction between complementary gradients of retinal EphA receptors and collicular ephrin-A ligands. We have tested this hypothesis by using gene targeting to elevate EphA receptor expression in a subset of mouse ganglion cells, thereby producing two intermingled ganglion cell populations that express distinct EphA receptor gradients. We find that these two populations form separate maps in the colliculus, which can be predicted as a function of the net EphA receptor level that a given ganglion cell expresses relative to its neighbors.  相似文献   

12.
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.  相似文献   

13.
Auditory pathways contain orderly representations of frequency selectivity, which begin at the cochlea and are transmitted to the brainstem via topographically ordered axonal pathways. The mechanisms that establish these tonotopic maps are not known. Eph receptor tyrosine kinases and their ligands, the ephrins, have a demonstrated role in establishing topographic projections elsewhere in the brain, including the visual pathway. Here, we have examined the function of these proteins in the formation of auditory frequency maps. In birds, the first central auditory nucleus, n. magnocellularis (NM), projects tonotopically to n. laminaris (NL) on both sides of the brain. We previously showed that the Eph receptor EphA4 is expressed in a tonotopic gradient in the chick NL, with higher frequency regions showing greater expression than lower frequency regions. Here we misexpressed EphA4 in the developing auditory brainstem from embryonic day 2 (E2) through E10, when NM axons make synaptic contact with NL. We then evaluated topography along the frequency axis using both anterograde and retrograde labeling in both the ipsilateral and contralateral NM-NL pathways. We found that after misexpression, NM regions project to a significantly broader proportion of NL than in control embryos, and that both the ipsilateral map and the contralateral map show this increased divergence. These results support a role for EphA4 in establishing tonotopic projections in the auditory system, and further suggest a general role for Eph family proteins in establishing topographic maps in the nervous system.  相似文献   

14.
The EphA3 receptor tyrosine kinase preferentially binds ephrin-A5, a member of the corresponding subfamily of membrane-associated ligands. Their interaction regulates critical cell communication functions in normal development and may play a role in neoplasia. Here we describe a random mutagenesis approach, which we employed to study the molecular determinants of the EphA3/ephrin-A5 recognition. Selection and functional characterization of EphA3 point mutants with impaired ephrin-A5 binding from a yeast expression library defined three EphA3 surface areas that are essential for the EphA3/ephrin-A5 interaction. Two of these map to regions identified previously in the crystal structure of the homologous EphB2-ephrin-B2 complex as potential ligand/receptor interfaces. In addition, we identify a third EphA3/ephrin-A5 interface that falls outside the structurally characterized interaction domains. Functional analysis of EphA3 mutants reveals that all three Eph/ephrin contact areas are essential for the assembly of signaling-competent, oligomeric receptor-ligand complexes.  相似文献   

15.
The EphA receptor tyrosine kinases interact with membrane-bound ligands of the ephrin-A subfamily. Interaction induces EphA receptor oligomerization, tyrosine phosphorylation, and, as a result, EphA receptor signaling. EphA receptors have been shown to regulate cell survival, migration, and cell-cell and cell-matrix interactions. However, their functions in lymphoid cells are only beginning to be described. We show in this study that functional EphA receptors are expressed by murine thymocytes, including CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) subpopulations. We demonstrate that activation of EphA receptors by the ephrin-A1 ligand inhibits the anti-CD3-induced apoptosis of CD4(+)CD8(+) double-positive thymocytes. Furthermore, ephrin-A1 costimulation suppresses up-regulation of both the IL-2R alpha-chain (CD25) and early activation Ag CD69 and can block IL-2 production by CD4(+) single-positive cells. In agreement, EphA receptor activation in thymocytes also inhibits TCR-induced activation of the Ras-MAPK pathway. Our findings suggest that EphA receptor activation is antithetical to TCR signaling in thymocytes, and that the level of engagement by ephrin-A proteins on thymic APCs regulates thymocyte selection.  相似文献   

16.
The Eph receptors are the largest known family of receptor protein tyrosine kinases, which play important roles with their ligands called ephrin in the neural development, angiogenesis, and vascular network assembly. It was previously shown that ephrin-A2, -A3 and -A5 bind to, and activate the EphA8 receptor tyrosine kinase, respectively. In this study, we have examined if there are other additional ephrin ligands interacting with the EphA8 receptor tyrosine kinase expressed in NIH3T3 fibroblasts. For this purpose, we have constructed chimeric ephrin-A1, -A4, -B1, -B2 or -B3 ligands consisting of the Fc portion of human IgG fused to their carboxyl-terminus. Both ephrin-A1 and ephrin-A4 chimeric ligands efficiently bound to the EphA8 receptor expressed in NIH3T3 fibroblasts, whereas the transmembrane ligands including ephrin-B1, -B2 and -B3 did not. Additionally we have demonstrated that both the EphA8-TrkB chimeric receptor and the EphA8 receptor expressed in NIH3T3 fibroblasts are efficiently tyrosine-phosphorylated upon stimulating with epthin-A1 or -A4 but none of transmembrane ephrin-B proteins. These results strongly indicate that the EphA8 receptor functions exclusively as an glycosyl phosphatidylinositol (GPI)-linked ephrin ligand-dependent receptor protein tyrosine kinase.  相似文献   

17.
Eph receptor tyrosine kinases and their ligands, the ephrins, perform an important regulatory function in tissue organization, as well as participate in malignant transformation of cells. Ephrin-A1, a ligand of A class Eph receptors, is a modulator of tumor growth and progression, and the mechanism of its action needs detailed investigation. Here we report on the development of a system for bacterial expression of an ephrin-A1 receptor-binding domain (eA1), a procedure for its purification, and its renaturation with final yield of 50 mg/liter of culture. Functional activity of eA1 was confirmed by immunoblotting, laser scanning confocal microscopy, and flow cytometry. It is shown that monomeric non-glycosylated receptor-binding domain of ephrin-A1 is able to activate cellular EphA2 receptors, stimulating their phosphorylation. Ligand eA1 can be used to study the features of ephrin-A1 interactions with different A class Eph receptors. The created expression cassette is suitable for the development of ligands with increased activity and selectivity and experimental systems for the delivery of cytotoxins into tumor cells that overexpress EphA2 or other class A Eph receptors.  相似文献   

18.
19.
Ephrins are cell surface-associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance and cell migration. EphA2, 3, and 4 receptors and one of their cognate ligands, ephrin-A2, are expressed by cells in the subventricular zone and ganglionic eminence of the embryonic day 14.5 telencephalon and by neural precursor cells in vitro. Activation of EphA receptors in dissociated neural precursor cells in vitro facilitates the commitment to neuronal fates. The majority of ephrin-A1-induced neurons is immunoreactive for tyrosine hydroxylase. Blocking the signal by the extracellular domain of EphA in forebrain slices results in a decrease in neurogenesis. Extracellular signal-regulated kinase is activated by the ligand binding to EphA receptors and is involved in the neurogenesis through EphA receptors. Rap1, but not Ras, is activated in response to ephrin-A1. Our results identify EphA receptors as positive regulators of the mitogen-activated protein kinase pathway that exerts neurogenesis of neural precursor cells from the developing central nervous system.  相似文献   

20.
Topographically precise projections are established early in neural development. One such topographically organized network is the auditory brainstem. In the chick, the auditory nerve transmits auditory information from the cochlea to nucleus magnocellularis (NM). NM in turn innervates nucleus laminaris (NL) bilaterally. These projections preserve the tonotopy established at the level of the cochlea. We have begun to examine the expression of Eph family proteins during the formation of these connections. Optical density measurements were used to describe gradients of Eph proteins along the tonotopic axis of NL in the neuropil, the somata, and the NM axons innervating NL at embryonic day 10, when synaptic connections from NM to NL are established. At E10-11, NL dorsal neuropil expresses EphA4 at a higher concentration in regions encoding high frequency sounds, decreasing in concentration monotonically toward the low frequency (caudolateral) end. In the somata, both EphA4 and ephrin-B2 are concentrated at the high frequency end of the nucleus. These tonotopic gradients disappear between E13 and E15, and expression of these molecules is completely downregulated by hatching. The E10-11 patterns run counter to an apparent gradient in dendrite density, as indicated by microtubule associated protein 2 (MAP2) immunolabeling. Finally, ephrin-B2 is also expressed in a gradient in tissue ventral to the NL neuropil. Our findings thus suggest a possible conserved mechanism for establishing topographic projections in diverse sensory systems. These results of this study provide a basis for the functional examination of the role of Eph proteins in the formation of tonotopic maps in the brainstem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号