首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen or 30 days of anaerobic growth conditions significantly reduced shoot and root nitrogen, potassium, phosphorus, iron and manganese concentrations in seedlings of pond pine ( Pinus serotina Michx.), sand pine [ P. clausa (Engelm.) Sarg.] and drought-hardy and wet-site loblolly pine ( P. taeda L.) grown in a culture system using non-circulating, continuously flowing solution. Calcium and shoot magnesium levels were least affected by anaerobic growth conditions – largely reflecting the passive nature of their uptake. Shoot and root nutrient content (mg nutrient pot-1) followed similar trends, with wet-site loblolly and pond pine seedlings least affected by anaerobic solution culture. Shoot biomass of wet-site loblolly and pond pine seedlings was not affected by anaerobiosis, suggesting an increase in shoot nutrient utilization efficiency. Root biomass was significantly reduced by 15 or 30 days of anaerobiosis, with sand pine exhibiting the largest reduction in root dry weight (57%).
These results suggest that anaerobiosis interferes with net nutrient acquisition, even under the high nutrient conditions provided by solution culture. Sand pine suffered the largest reductions in shoot and root biomass and nutrient concentrations, showing earlier symptoms of waterlogging injury and nutrient stress than drought-hardy loblolly pine seedlings. Whether net nutrient acquisition decreased because of the reduction in root surface area available for absorption and/or reduced uptake efficiency cannot be ascertained from these data.  相似文献   

2.
Seedlings of pond pine ( Pinus serotina Michx.), sand pine [ P. clausa (Engelm.) Sarg.], and loblolly pine ( P. taeda L., wet-site and drought-hardy seed sources) were grown in hydroponic solution culture using a non-circulating, continuously flowing design under anaerobic or aerobic conditions to determine whether flooding tolerance was correlated with enhanced internal root aeration. Transport of atmospheric O2 from the shoot to the root of anaerobically grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation, using both reduced indigo-carmine solution and a polarographic, ensheathing Pt-electrode. Stem and root collar lenticels were the major sites of atmospheric O2 entry for submerged roots in these seedlings. No O2 leakage was detected from roots of aerobically grown pine seedlings. Longitudinal and radial pathways for gaseous diffusion via intercellular air spaces in the pericycle and between ray parenchyma cells, respectively, were demonstrated histo-logically in anaerobically grown loblolly and pond pines. Rhizosphere oxidation, and lenticel and aerenchyma development in roots of flood-intolerant sand pine seedlings grown in anaerobic solutions were minimal. Only 15 days of anaerobic growth conditions were necessary to increase internal root porosities of loblolly and pond pine seedlings – although not to the extent found in seedlings treated for 30 or 75 days. Histological results indicated that root tissue in the secondary stage of growth was capable of forming intercellular air spaces, demonstrating a degree of internal plasticity – at least in the more flood-tolerant loblolly and pond pine seedlings.  相似文献   

3.
Topa  Mary A.  Sisak  Cheryl L. 《Plant and Soil》1997,190(2):317-329
The effects of low-P growth conditions on growth and net P acquisition were examined in two species of pine that are indigenous to P-deficient soils of the Atlantic Coastal Plain: pond pine (Pinus serotina Michx.), a moderately-fast growing pine, and a slow-growing seed source of loblolly pine P. taeda L.) from Texas. Short-term 32P uptake experiments were conducted using intact nonmycorrhizal seedlings that had been grown for 7 weeks in continuously-flowing solution culture at 5 or 100 µM P. Growth and P uptake of pond pine were more responsive to a higher P supply than the slow-growing loblolly pine. Pond pine seedlings in the 100 µM P treatment were twice the size of those grown in 5 µM P and accumulated almost five times as much seedling P. In contrast, seedling biomass of loblolly pine increased by only 8% under high-P growth conditions, and seedlings accumulated twice as much P, reflecting the higher P concentrations in shoot and root tissues. Although rates of unidirectional influx of 32P were 22 and 61% higher under low-P growth conditions in pond and loblolly pine, respectively, net uptake rates in seedlings from the 5 µM P treatment were over three times those of seedlings grown in 100 µM P. These results suggest that unidirectional efflux out of the root was controlling net uptake of P as much, if not more, than unidirectional influx. Efflux of32 P out of root tissue, particularly older tissue, decreased in seedlings grown under low-P conditions, possibly due to a reduction in the size of the phosphorus pool available for efflux, i.e. the soluble Pi pool. Over 75% of the total root P in both loblolly and pond pine seedlings grown in 100 µM P treatment was present as organic P, suggesting that organic P, particularly phytate, may represent important storage pools in roots of woody species. Within each species, higher rates of influx and net uptake in seedlings from the low-P treatment were associated with lower P concentrations in shoot and root tissue, and shoot FW:root FW ratios. Efflux may represent a short-term means of regulating net P uptake, while the demand for P created by growth and storage may represent a long-term regulation.  相似文献   

4.
M. A. Topa 《Plant and Soil》1996,182(2):259-265
Short-term 32P uptake experiments were conducted with intact seedlings of loblolly pine (Pinus taeda L.) to examine possible seed source variation in net accumulation of 32P in roots and shoots, and in rates of unidirectional influx. Seed source had a highly significant effect on biomass and P concentrations of shoots and roots. Seedlings from two seed sources representing fast-growing populations (a broadly-adapted and wet-site seed source) accumulated over 60% more total seedling P than smaller seedlings from a drought-hardy seed source, reflecting higher biomass and root P concentrations. Rates of unidirectional 32P influx in seedlings from the drought-hardy seed source were more than twice the rates of the seedlings from the broadly-adapted seed source. However, after 24 h in labeled uptake solution, net accumulation of 32P was similar, suggesting that rates of unidirectional efflux from roots of the drought-hardy seed source were also high. Although there were no significant differences in biomass and tissue P concentrations between the two fast-growing seed sources, rates of unidirectional influx in seedlings from the broadly-adapted seed source were 42% lower than rates in seedlings from the wet-site source. Yet, after 24 h in labeled uptake solution, net accumulation of 32P in seedlings from the broadly-adapted seed source was 50% higher. Unidirectional efflux out of the root may regulate net uptake of P as much, if not more, than influx in loblolly pine seedlings-at least under high-P growth conditions. The results in this study do not support previous studies with herbaceous plants suggesting that fast-growing species typically exhibit higher rates of nutrient uptake than slow-growing species.  相似文献   

5.
31P nuclear magnetic resonance (NMR) spectroscopy was used to estimate the amount of inorganic phosphate (Pi) present in the cytoplasm and vacuole of root tips and subapical root segments of pond pine ( Pinus serotina Michx.). In root tips of seedlings grown with 100 mmol m–3P (HP) the cytoplasmic Pi content, on a root volume basis, was ≈ 1·5 μ mol cm–3 and the vacuolar Pi content, on a root volume basis, was ≈ 3·4 μ mol cm–3. In root tips from Pi starved seedlings the cytoplasmic Pi content, on a root volume basis, was ≈ 0·75 μ mol cm–3; vacuolar Pi was too low to be reliably estimated. Similar results were obtained with subapical root segments; the Pi concentration in the cytoplasm was maintained at around 2 mol m–3 while that in the vacuole varied with Pi supply. This work demonstrates for the first time that quantitative measurements of the subcellular compartmentation of Pi can be made in young tissues of a woody species. The results indicate that cytoplasmic Pi levels are maintained across a range of external Pi supplies probably by withdrawing Pi stored in the vacuole.  相似文献   

6.
Heavy metal loads in forest soils have been increasing over time due to atmospheric inputs. Accumulation in the upper soil layers could affect establishment of seedlings and forest regeneration. Mediterranean species show a high initial root development, allowing seedlings to reach the moisture of deeper soil layers. In the present work seedlings of stone pine ( Pinus pinea L.) and maritime pine ( Pinus pinaster Ait.), were grown in culture solution supplied with 0.0, 0.1, 1 or 5 μ M CdSO4 or with 1 μ M CdSO4 and 1 μ M CuSO4 combined. In both species tap-root elongation was drastically reduced in the 5 μ M Cd2+ and in the (Cd2++ Cu2+) treatments. A supply of 0.1 or 1 μ M Cd2+, however, enhanced root elongation in Pinus pinea without significantly influencing root elongation in Pinus pinaster . In both species the root density (weight per unit length) and the width of the cortex increased in response to Cd2+ exposure. In Pinus pinaster the mitotic index decreased at the higher Cd2+ concentrations and when Cd2+ and Cu2+ were combined. The data suggest that cell elongation is more sensitive to Cd2+ than cell division. The number and length of the lateral roots were also affected by Cd2+ treatment to a higher degree in Pinus pinaster than in Pinus pinea, reflecting the different Cd- tolerance of the two species.  相似文献   

7.
Seeds of the water plant Trapa natans L. (water chestnut) can germinate in strict anoxia. The seedlings show seminal roots growing upwards while shoot buds remain quiescent until O2 becomes available. Trapa seedlings are highly tolerant to anoxia. The rate of ethanol fermentation was 21.2 μmol (g FW)−1 h−1, while production of lactate was negligible and lower than that of succinate. The seminal root of Trapa compares better to the rice coleoptile rather than to the rice root, both functionally and as to the metabolic response to anoxia. The anaerobic germination of Nuphar luteum L. and Scirpus mucronatus L. was also characterized by a limited developmental program.  相似文献   

8.
 Adventitious root formation in cuttings from fascicular shoots in loblolly pine (Pinus taeda L.) consists of four more or less discontinuous stages: (1) proliferation of cells at the base of the cutting, (2) differentiation of wound vascular tissue and periderm, (3) dedifferentiation of a zone near the wound cambium and wound phloem to form a root initial, and (4) formation of a root meristem. Anatomical changes during adventitious root initiation are described in cuttings from donors of different types and ages. Cuttings from seedlings and 3- to 7-year-old hedged stock plants rooted better than cuttings from 3-year-old tree form donors. It is concluded that the loss of rooting capacity in loblolly pine can be arrested by shearing loblolly pine stock plants to low hedges. The process of root initiation, however, was similar in cuttings from all sources and is apparently not the cause for the rapid decline of rooting potential with increasing age of the donor plant. Received: 3 June 1997 / Accepted: 15 August 1997  相似文献   

9.
An experiment was carried out in open-top chambers located in eastern Spain. One-yr-old Pinus halepensis Mill. seedlings were exposed during three consecutive summers to the following ozone (O3) treatments: charcoal-filtered air (CFA), non-filtered air (NFA) or non-filtered air plus 40 nl l−1 O3, 9 h d−1, 5 d wk−1 (NFA+40). Seasonal variations in Aleppo pine performance were observed since reductions in chlorophyll and cellular peroxidase levels associated with increases in superoxide dismutase activity, were recorded during the summer. Similarly, a reduction in epoxidation state was found at midday during the summer, derived from an activation of the xanthophyll cycle associated to an increment in radiation and temperature levels.
The first O3-induced effects were recorded in previous-year needles (1991) during the first summer exposure as an increase in extracellular and total peroxidase activities and in zeaxanthin levels in the NFA+40 treatment along with a trend to a higher SOD activity in this treatment. A carry-over effect was detected since a lower winter recovery of chlorophyll levels was found in the NFA+40 seedlings along with a reduction of xanthophyll levels. A reduction in chlorophyll levels was observed in the previous-year needles (1992) from the NFA+40 treatment at the end of the second fumigation period. Realistic ozone exposures induced alterations in plant antioxidative systems and plant pigments as shown in this paper. These observations together with the reductions in stomatal conductance and net photosynthesis recorded in the same experiment, indicate that Aleppo pine is a species sensitive to ozone.  相似文献   

10.
Loblolly pine (Pinus taeda L.) seedlings were grown in competition with native weeds using soil and seed bank collected from recently chopped and burned areas near Appomattox, Virginia. One-year-old seedlings were planted and weeds allowed to germinate from the native seed bank while being exposed to CO(2) (ambient and elevated - approximately 700 ppm) and water (water stressed and well watered) treatments for approximately one growing season in a greenhouse. Elevated CO(2) did not influence total weed biomass; however, C(3) weed community development was favored over C(4) weed community development in elevated CO(2) regardless of water availability. This suggests that weed community composition may shift toward C(3) plants in a future elevated CO(2) atmosphere. Pine growth was significantly greater in the well watered and elevated CO(2) treatments compared to the water stressed and ambient treatments, respectively, even though they were competing with native herbaceous weeds for resources. There was a significant water and CO(2) interaction for pine root:shoot ratio. Under elevated CO(2), root:shoot ratio was significantly greater in the water stressed treatment than the well watered treatment. In contrast, there was no significant difference in the root:shoot ratio under the ambient CO(2) treatment for either water treatment. These results suggest that loblolly pine seedlings will respond favorably in an elevated CO(2) atmosphere, even under dry conditions and competing with herbaceous weeds.  相似文献   

11.
Net CO2 exchange rates (CERs) were measured in seedlings of two loblotly pine ( Pinus taeda L.) families following 6- or 13-week exposures to ozone (charcoalfiltered or ambient air + O3) and acid rain treatments (pH 3.3, 4.5 and 5.2). Ozone exposures (14 or 170 nl l−1) were made in open-top chambers, and in continously stirred tank reactors (14, 160 or 320 nl l−1) located in the field and laboratory, respectively. The CERs of whole shoots were measured in an open infrared gas analysis system at 6 levels of photosynthetic photon flux density (0, 33, 60, 410, 800 and 1660 μmol m−2 s−1). Treatment effects were not consistent between field- and laboratory-exposed seedlings. Ozone-treated field seedlings exhibited statistically significant reductions in light-saturated CER of 12.5 and 25% when measured at 6 and 13 weeks, respectively. Laboratory seedlings exhibited mixed responses to O3, with one family showing reduced CER only after 6 weeks of O3 exposure and the other only after 13 weeks (O3 >160 nl l−1 for both). After 13 weeks of exposure, pH 3.3, and 4.5 rain treatments enhanced light-saturated CER by an average of 52% over that observed in seedlings exposed to the pH 5.2 treatment. Enhanced CERs due to acid rain were of the same magnitude (3–5 μmol CO2g−1 s−1) as ozone-induced CER reductions. No differences in dark respiration were detected between treatments. Although ozone and acid rain treatments altered seedling CER, the differences were not translated into altered final plant dry weights over the 13-week exposure period.  相似文献   

12.
Brassica rapa L. (rapid-cycling Brassica), was grown in environmentally controlled chambers to determine the interactive effects of ozone (O3) and increased root temperature (RT) on biomass, reproductive output, and photosynthesis. Plants were grown with or without an average treatment of 63 ppb O3. RT treatments were 13°C (LRT) and 18°C (HRT). Air temperatures were 25°C/15°C day/night for all RT treatments.
Ozone affected plant biomass more than did root temperature. Plants in O3 had significantly smaller total plant d. wt, shoot weight, leaf weight, leaf area and leaf number than plants grown without O3. LRT plants tended to have slightly smaller total plant d. wt, shoot weight, root weight, leaf weight, leaf area, and leaf number than HRT plants. For all variables, LRT plants grown in O3 had the smallest biomass, and plants grown in HRT without O3 had the largest biomass.
Ozone reduced both fruit weight and fruit number; LRT also reduced fruit weight but had no effect on fruit number. Ozone reduced photosynthesis but RT had no effect. Conductance and internal CO2 were unaffected by O3 or RT.
These studies indicate that plant growth with LRT might be more reduced in the presence of O3 than growth in plants with HRT, which might be able to compensate for O3-caused reductions in photosynthesis to avoid decreased biomass and reproductive output.  相似文献   

13.
We grew potted loblolly pine (Pinus taeda L.) seedlings from a single provenance under well watered and fertilized conditions at four locations along a 610 km north–south transect that spanned most of the species range to examine how differences in the above-ground environment would affect growth rate, biomass partitioning and gas exchange characteristics. Across the transect there was an 8.7°C difference in average growing season temperature, and temperature proved to be the key environmental factor controlling growth rate. Biomass growth was strongly correlated with differences in mean growing season temperature (R 2 = 0.97) and temperature sum (R 2 = 0.92), but not with differences in mean daily photosynthetic photon flux density or mean daily vapor pressure deficit. Biomass partitioning between root and shoot was unchanged across sites. There was substantial thermal acclimation of leaf respiration, but not photosynthesis. In mid-summer, leaf respiration rates measured at 25°C ranged from 0.2 μmol m−2 s−1 in seedlings from the warmest location to 1.1 μmol m−2 s−1 in seedlings from the coolest site. The greatest biomass growth occurred near the middle of the range, indicating that temperatures were sub- and supra-optimal at the northern and southern ends on the range, respectively. However, in the middle of the range, there was an 18% decrease in biomass increment between two sites, corresponding to 1.4°C increase in mean growing season temperature. This suggests that thermal acclimation was insufficient to compensate for this relatively small increase in temperature.  相似文献   

14.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

15.
The effects of 700 μmol mol−1 CO2 and 200 nmol mol−1 ozone on photosynthesis in Pinus halepensis seedlings and on N translocation from its mycorrhizal symbiont, Paxillus involutus, were studied under nutrient-poor conditions. After 79 days of exposure, ozone reduced and elevated CO2 increased net assimilation rate. However, the effect was dependent on daily accumulated exposure. No statistically significant differences in total plant mass accumulation were observed, although ozone-treated plants tended to be smaller. Changes in atmospheric gas concentrations induced changes in allocation of resources: under elevated ozone, shoots showed high priority over roots and had significantly elevated N concentrations. As a result of different shoot N concentration and net carbon assimilation rates, photosynthetic N use efficiency was significantly increased under elevated CO2 and decreased under ozone. The differences in photosynthesis were mirrored in the growth of the fungus in symbiosis with the pine seedlings. However, exposure to CO2 and ozone both reduced the symbiosis-mediated N uptake. The results suggest an increased carbon cost of symbiosis-mediated N uptake under elevated CO2, while under ozone, plant N acquisition is preferentially shifted towards increased root uptake.  相似文献   

16.
In the present study, we examined the effects of long- and short-term hypoxia on net uptake and transport of phosphorus to shoots of pond pine (Pinus serotina Michx.), a moderately flood-tolerant southern pine, and the influence aerenchyma formation might have in maintenance of P uptake and transport. Seedlings were grown under aerobic (250 μM O2) or hypoxic (≤50 μM O2) solution conditions for 5.3 weeks in continuously flowing solution culture containing 100 μM P. Intact seedlings were then labeled with 32P for up to 24 h to determine how short- and long-term hypoxic solution conditions affected rates of unidirectional influx and the accumulation of 32P in roots and shoots. Seedlings in the long-term hypoxic treatment were grown for 5.3 weeks in hypoxic solution and also labeled in hypoxic uptake solution. The short-term hypoxic treatments included a 24-h hypoxic pretreatment followed by time in labeled hypoxic uptake solution for seedlings grown under aerobic or hypoxic conditions; in the latter case, diffusion of atmospheric O2 entry into stem and root collar lenticels was blocked, thus removing any influence that aerenchyma formation might have had on enhancing O2 concentrations of root tissue. Although unidirectional influx rates of 32P in roots of seedlings grown under long-term hypoxic conditions were 1.4 times those of aerobically grown seedlings, accumulation of 32P in roots was similar after 24 h in labeled uptake solution. These results suggest that 32P efflux was also higher under hypoxic conditions. Higher shoot/root fresh weight ratios and lower shoot P concentrations in seedlings grown under hypoxic solution conditions suggest that the “shoot P demand” per unit root should be high. Yet accumulation of 32P in shoots was reduced by 50% after 24 h in hypoxic uptake solution. Both short-term hypoxic treatments decreased accumulation of 32P in roots by more than 50%. Short-term hypoxia decreased shoot accumulation in seedlings grown under aerobic and hypoxic conditions by 84 and 50%. respectively. Short- and long-term hypoxic conditions increased the percentage of root 32P in the nucleic acid and chelated-P pools, resulting in a significantly smaller percentage of 32P in the soluble inorganic phosphate (pi) pool, the pool available for transport to the shoot. However, a reduction in pool size or in labeling of the pool available for transport cannot fully account for the large reduction in accumulation of 32P in shoots, particularly in the short-term hypoxic treatment of aerobically grown seedlings. Our results suggest that both influx and transport of 32P to shoots of pond pine seedlings are O2-dependent processes, and that the transport of 32P to shoots may be more sensitive to hypoxic solution conditions than influx at the cortical and epidermal plasmalemma, with aerenchyma formation supporting a substantial amount of both 32P uptake and transport.  相似文献   

17.
The activity of glutamine synthetase (GS) in mustard ( Sinapis alba L.) and Scots pine ( Pinus sylvestris L.) seedlings was used as an index to evaluate the capacity to cope with excessive ammonium supply. In these 2 species GS activity was differently affected by the application of nitrogen compounds (NH4+ or NO3). Mustard seedlings older than 5 days showed a considerable increase in GS activity after NH4+ or NO3 application. This response was independent of the energy flux, but GS activity in general was positively affected by light. Endogenous NH4+ did not accumulate greatly after nitrogen supply. In contrast, seedlings of Scots pine accumulated NH4+ in cotyledons and roots and showed no stimulation of GS activity after the application of ammonium. In addition, root growth was drastically reduced. Thus, the pine seedlings seem to have insufficient capacity to assimilate exogenously supplied ammonium. NO3, however, did not lead to any harmful effects.  相似文献   

18.
Given the observed heterogeneity in fire severity produced within wildfires, we asked to what extent this heterogeneity might affect post-fire regeneration. For this purpose, we studied the post-fire dynamics of Pinus halepensis (Aleppo pine) in the eastern Iberian Peninsula. Sampling was stratified on the basis of fire severity. We defined three fire severity classes based on the degree of consumption of the pine canopy. The results suggested that there is no clear relationship between seedling density and fire severity; however, mortality was lower and growth (height, shoot biomass and root biomass) was higher in the high severity class. These results can be explained by soil processes: Sites in the high fire severity class may have sustained higher fire intensities, resulting in higher soil organic matter mineralisation and higher ash deposition, and thus in higher post-fire soil fertility. This higher fertility would produce faster growth in pine seedlings. Independent of the severity class, seedling mortality was higher in quadrats (50 × 50 cm) with higher cover of the perennial grass Brachypodium retusum (Poaceae), suggesting a possible competitive effect. For all plots in all 3 severity classes, spatial analysis suggests an aggregate seedlings pattern, but with independence from the position of the adult (source) trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.

Aims

Longleaf pine (Pinus palustris Mill.) is being restored across the U.S. South for a multitude of ecological and economic reasons, but our understanding of longleaf pine’s response to soil physical conditions is poor. On the contrary, our understanding of loblolly pine (Pinus taeda L.) root and shoot growth response to soil conditions is well established.

Methods

We performed a comparative greenhouse study which modeled root length density, total seedling biomass, and the ratio of aboveground:belowground mass as functions of volumetric water content, bulk density and soil fertility (fertilized or not).

Results

Root length density was about 35 % greater in longleaf pine seedlings compared to loblolly pine seedlings, and was reasonably well modeled (R 2?=?0.54) for longleaf pine by bulk density (linear), volumetric water content (quadratic), soil fertility, and the interactions of bulk density, volumetric water content, species, and soil fertility. The aboveground:belowground mass ratio (ABR) increased at both extremes of water content.

Conclusions

This research indicates that young longleaf pine seedling root systems respond more negatively to extremes of soil physical conditions than loblolly pine, and compacted or dry loamy soils should be ameliorated in addition to normal competition control, especially on soils degraded by past management.  相似文献   

20.
采用砂培方法,在温室内研究了马尾松1年生苗木在不同锰浓度(0.005(对照)、1、5、10和15mmol·L-1)条件下的生理指标响应。结果表明:与对照相比,高锰浓度(≥10mmol·L-1)下马尾松的生物量和根系活力降低。高锰条件下,马尾松针叶中叶绿素a、叶绿素b、类胡萝卜素含量下降,表明锰对马尾松光合机构存在一定影响,同时也是导致生物量降低的原因之一。在高锰胁迫下,丙二醛(MDA)含量以及超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性均发生显著变化且对锰毒起到一定的缓解作用,其中CAT和MDA对高锰胁迫的响应比较灵敏,MDA和2种酶的变化反映了马尾松对高锰胁迫的生理响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号