首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of nisin production have been investigated in terms of endogenous features of the producer organism, Lactococcus lactis. Nisin-producing transposons (Tn Nip) were transferred to different hosts by conjugation. Constructs were cultivated in batch cultures and nisin produced was measured. The proteinase function of C2Prt (Tn Nip)-1 was eliminated by plasmid curing, resulting in the construct C2Prt - (Tn Nip)-1. C2Prt - (Tn Nip)-1 produced nisin to a higher concentration compared to C2Prt (Tn Nip)-1 and was able to maintain the maximum concentration till the end of cultivation. The final concentration of nisin produced was host-specific, because when different constructs carrying the same Tn Nip were cultivated they produced nisin to different concentrations. However, when the same host carried Tn Nip transposons derived from different donors the concentration of nisin produced was similar, suggesting that the two Tn Nip transposons may be similar.  相似文献   

2.
Nisin production in batch culture and fed-batch cultures (sucrose feeding rates were 6, 7, 8, and 10 g l–1 h–1, respectively) by Lactococcus lactis subsp. lactis ATCC 11454 was investigated. Nisin production showed primary metabolite kinetics, and could be improved apparently by altering the feeding strategy. The nisin titer reached its maximum, 4,185 IU ml–1, by constant addition of sucrose at a feeding rate of 7 g l–1 h–1; an increase in 58% over that of the batch culture (2,658 IU ml–1). Nisin biosynthesis was affected strongly by the residual sucrose concentration during the feeding. Finally, a mathematical model was developed to simulate the cell growth, sucrose consumption, lactic acid production and nisin production. The model was able to describe the fermentation process in all cases.  相似文献   

3.
4.
When lactate was removed from sucrose fermentation in situ, using the anionic-exchange resin Amberlite IRA-67, by Lactococcus lactis growing in batch culture, nisin production increased by two-fold when compared to the alkali pH-controlled fermentation. In comparison to sucrose, lactate removal increased nisin production 1.5-fold and 0.3-fold when galactose and glucose were used as carbon sources respectively.  相似文献   

5.
In this study, nisin producer Lactococcus lactis strains displaying cell surface chitin-binding domain (ChBD) and capable of immobilizing to chitin flakes were constructed. To obtain ChBD-based cell immobilization, Usp45 signal sequence with ChBD of chitinase A1 enzyme from Bacillus circulans was fused with different lengths of PrtP (153, 344, and 800 aa) or AcmA (242 aa) anchors derived from L. lactis. According to the whole cell ELISA analysis, ChBD was successfully expressed on the surface of L. lactis cells. Scanning electron microscope observations supported the conclusion of the binding analysis that L. lactis cells expressing the ChBD with long PrtP anchor (800 aa) did bind to chitin surfaces more efficiently than cells with the other ChBD anchors. The attained binding affinity of nisin producers for chitin flakes retained them in the fermentation during medium changes and enabled storage for sequential productions. Initial nisin production was stably maintained with many cycles. These results demonstrate that an efficient immobilization of L. lactis cells to chitin is possible for industrial scale repeated cycle or continuous nisin fermentation.  相似文献   

6.
The lantibiotic nisin is produced by several strains of Lactococcus lactis. The complete gene cluster for nisin biosynthesis in L. lactis 6F3 comprises 15 kb of DNA. As described previously, the structural gene nisA is followed by the genes nisB, nisT, nisC, nisI, nisP, nisR, and nisK. Further analysis revealed three additional open reading frames, nisF, nisE, and nisG, adjacent to nisK. Approximately 1 kb downstream of the nisG gene, three open reading frames in the opposite orientation have been identified. One of the reading frames, sacR, belongs to the sucrose operon, indicating that all genes belonging to the nisin gene cluster of L. lactis 6F3 have now been identified. Proteins NisF and NisE show strong homology to members of the family of ATP-binding cassette (ABC) transporters, and nisG encodes a hydrophobic protein which might act similarly to the immunity proteins described for several colicins. Gene disruption mutants carrying mutations in the genes nisF, nisE, and nisG were still able to produce nisin. However, in comparison with the wild-type strain, these mutants were more sensitive to nisin. This indicates that besides nisI the newly identified genes are also involved in immunity to nisin. The NisF-NisE ABC transporter is homologous to an ABC transporter of Bacillus subtilis and the MbcF-MbcE transporter of Escherichia coli, which are involved in immunity to subtilin and microcin B17, respectively.  相似文献   

7.
The biosynthetic genes of the nisin-producing strain Lactococcus lactis 6F3 are organized in an operon-like structure starting with the structural gene nisA followed by the genes nisB, nisT, and nisC, which are probably involved in chemical modification and secretion of the prepeptide (G. Engelke, Z. Gutowski-Eckel, M. Hammelmann, and K.-D. Entian, Appl. Environ. Microbiol. 58:3730-3743, 1992). Subcloning of an adjacent 5-kb downstream region revealed additional genes involved in nisin biosynthesis. The gene nisI, which encodes a lipoprotein, causes increased immunity after its transformation into nisin-sensitive L. lactis MG1614. It is followed by the gene nisP, coding for a subtilisin-like serine protease possibly involved in processing of the secreted leader peptide. Adjacent to the 3' end of nisP the genes nisR and nisK were identified, coding for a regulatory protein and a histidine kinase, showing marked similarities to members of the OmpR/EnvZ-like subgroup of two-component regulatory systems. The deduced amino acid sequences of nisR and nisK exhibit marked similarities to SpaR and SpaK, which were recently identified as the response regulator and the corresponding histidine kinase of subtilin biosynthesis. By using antibodies directed against the nisin prepeptide and the NisB protein, respectively, we could show that nisin biosynthesis is regulated by the expression of its structural and biosynthetic genes. Prenisin expression starts in the exponential growth phase and precedes that of the NisB protein by approximately 30 min. Both proteins are expressed to a maximum in the stationary growth phase.  相似文献   

8.
9.
10.
Nisin-producing Lactococcus lactis strains show a high degree of resistance to the action of nisin, which is based upon expression of the self-protection (immunity) genes nisI, nisF, nisE, and nisG. Different combinations of nisin immunity genes were integrated into the chromosome of a nisin-sensitive Bacillus subtilis host strain under the control of an inducible promoter. For the recipient strain, the highest level of acquired nisin tolerance was achieved after coordinated expression of all four nisin immunity genes. But either the lipoprotein NisI or the ABC transporter-homologous system NisFEG, respectively, were also able to protect the Bacillus host cells. The acquired immunity was specific to nisin and provided no tolerance to subtilin, a closely related lantibiotic. Quantitative in vivo peptide release assays demonstrated that NisFEG diminished the quantity of cell-associated nisin, providing evidence that one role of NisFEG is to transport nisin from the membrane into the extracellular space. NisI solubilized from B. subtilis membrane vesicles and recombinant hexahistidine-tagged NisI from Escherichia coli interacted specifically with nisin and not with subtilin. This suggests a function of NisI as a nisin-intercepting protein.  相似文献   

11.
The influence of controlled pH (5.0–6.5) and initial dissolved oxygen level (0–90% air saturation) on nisin Z production in a yeast extract/Tween 80-supplemented whey permeate (SWP) was examined during batch fermentations with citrate positive Lactococcus lactis subsp. lactis UL719. The total activity corresponding to the sum of soluble and cell-bound activities, as measured by a critical dilution method, was more than 50% lower at pH 5.0 than in the range 5.5–6.5, although the specific production decreased as pH increased. A maximum nisin Z activity of 8200 AU/ml (4100IU/ml) was observed in the supernatant after 8h of culture for pH ranging from 5.5 to 6.5. Prolonging the culture beyond 12h decreased this activity at pH 6.0 and 6.5 but not at pH 5.5 or 5.0. A corresponding increase in cell-bound activity was probably due to adsorption of soluble bacteriocin to the cell wall. Aeration increased cell-bound and total activity to maximum values of 32800 and 41000 AU/ml (16400 and 20500IU/ml), respectively, with an initial level of 60% air saturation after 24h of incubation at pH 6.0. The specific production at 60% or 90% initial air saturation was eight-fold higher than at 0%.  相似文献   

12.
Nisin production by Lactococcus lactis subsp. lactis NIZO 22186 was studied in batch fermentation using a complex medium. Nisin production showed primary metabolite kinetics: nisin biosynthesis took place during the active growth phase and completely stopped when cells entered the stationary phase. A stringent correlation could be observed between the expression of the prenisin gene (nisA) and the synthesis of the post-translationally enzymically modified and processed mature nisin peptide. Moreover, it seemed likely that nisin had a growth control function. A physiological link is proposed between sucrose fermentation capacity and nisin production ability. Carbon source regulation appears to be a major control mechanism for nisin production.  相似文献   

13.
The goal of this project was to develop a lower-cost medium for nisin production, so this bacteriocin could be used in a broader range of industrial fermentation processes. The objectives included: (1) evaluating methods for controlling the inhibitory effect of lactic acid produced during fermentation, and (2) comparing two inexpensive complex media for nisin production. Lactococcus lactis subsp. lactis was cultured in shake flasks on Laurel–Tryptose broth to evaluate a range of buffers for pH control. NaHCO3 proved to be an effective buffer for increasing nisin production. Subsequent trials then evaluated condensed corn soluble (CCS, a fuel ethanol production byproduct) and cheese whey as inexpensive growth media. CCS was shown to be an efficient, low-cost medium for high nisin titers and yields. These modifications reduced the medium costs for nisin production from $600/kg nisin (based on Laurel–Tryptose broth medium) to $35–40/kg nisin for the corn solubles medium.  相似文献   

14.
15.
16.
17.
18.
【目的】通过基因工程手段增加糖酵解途径中编码限速酶6-磷酸果糖激酶基因Pfk在乳酸链球菌素(nisin)产生菌Lactococcus lactis N8中的表达,增快nisin的产生,从而提高单位时间内nisin的产量,缩短发酵周期。【方法】将pfk基因及编码以c AMP为依赖的蛋白激酶催化亚基基因pka C克隆到表达质粒p MG36e上,将共表达重组质粒转入L.lactis N8中,使Pfk-pka C基因过量表达,得到重组菌株L.lactis N8-p MG36epfk-pka C,并比较该重组菌株与野生菌的生长曲线、胞内6-磷酸果糖激酶活性、发酵上清液的抑菌活性及效价,并从转录水平分析两株菌nis A及pfk-pka C的转录差异,比较野生菌与重组菌在不同葡萄糖含量下培养产nisin的变化。【结果】Pfk基因与pka C基因的过表达对重组菌的生长速度没有明显的影响,却能提高重组菌产nisin的速度,在发酵10 h时nisin的产量比野生菌提高了20%,使得发酵周期缩短近2 h。野生菌及重组菌在不同葡萄糖含量下培养发酵上清液的nisin效价没有明显的变化。【结论】糖酵解途径中6-磷酸果糖激酶基因Pfk的过表达可以加快乳酸乳球菌N8产nisin的速率,缩短发酵周期。  相似文献   

19.
L. DE VUYST. 1995 A minimal synthetic medium (SM8) for nisin-producing Lactococcus lactis subsp. lactis strains has been designed; it consists of eight growth-stimulating amino acids (glutamic acid, methionine, valine, leucine, threonine, arginine, isoleucine and histidine), five vitamins (biotin, calcium pantothenate, nicotinic acid, pyridoxine and riboflavin) and the mineral salts dihydrogen phosphate, disodium hydrogen phosphate, sodium chloride, magnesium sulphate and trisodium citrate. Nisin biosynthesis is strongly dependent on the presence of a sulphur source, either an inorganic salt (magnesium sulphate or sodium thiosulphate) or the amino acids methionine, cysteine or cystathionine. The amino acids serine, threonine and cysteine highly stimulate nisin production without affecting the final cell yield, indicating their precursor role during nisin biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号