首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of seasonal changes on the activity of intestinal alkaline phosphatase was evaluated in two types of fish grown in the Kurshskii bay of the Baltic sea. With the pike perch, Lucioperka lucioperka , higher enzyme activity and optimal temperature of activity were observed in the summer compared to winter, whereas with the bream, Abramis brama , essentially no difference in enzyme activity and in optimal temperature of activity was found between the two seasons. In both fish, the thermal stability of the enzyme and the activation energy of enzyme activity decreased in winter. The different biological nature of the two fish appears to be reflected in the response of the intestinal alkaline phosphatase to seasonal changes.  相似文献   

2.
Employing histochemical methods, alkaline phosphatase activity was studied in the melano-macrophage centres of the spleen of the cichlid fish Oreochromis aureus (Steindachner). Enzyme activity was observed to be very low in normal fish. Prolonged starvation induced an enhanced enzyme response. Starvation followed by antigenic stimulation through an intraperitoneal injection of a bacterial vaccine further elevated the levels of alkaline phosphatase activity. The marked response of the pigment-bearing macrophages to bacterial antigen provides further evidence of the lymphoreticular nature of these pigmented cell aggregates. The association of alkaline phosphatase activity and lipofuscin (the most common pigment in fish melano-macrophage centres) with phagocytic cells has been documented in higher animals including  相似文献   

3.
Enzymatic catalysis in a supercritical fluid   总被引:6,自引:0,他引:6  
The enzyme alkaline phosphatase, EC 3. 1. 3. 1, was found to be active in a supercritical carbo dioxide solvent system. A batch reaction of disodium p-nitrophenyl phosphate with a 0.1 vol. % water solution in supercritical CO2 at 100 atm and 35°C produced p-nitrophenol when catalyzed by alkaline phosphatase.  相似文献   

4.
The effects of liposomes prepared from the E. coli lipids on the activity of soluble alkaline phosphatase and on the complementation reaction between its subunits were studied. It was shown that the liposomes nonspecifically catalyze the dimerization of the enzyme subunits without changing the dimer activity. The effects of phospholipases A2 and C on the activity of membrane-bound alkaline phosphatase were studied. An interrelationship was found between the level of hydrolysis of membrane phosphatidyl glycerol (PG) by these enzymes and the changes in the activity of membrane-bound alkaline phosphatase. It was also shown that PG is less accessible to the effects of phospholipases in the cells with derepressed biosynthesis of alkaline phosphatase. It is assumed that the membrane PG interacts with the membrane-bound alkaline phosphatase during its translocation into the periplasm.  相似文献   

5.
Alkaline phosphatases from different trematodes occupying the same habitat have identical pH otima but different levels of enzyme activities. Isoparorchis hypselobagri, from the fish Wallago attu, shows four to six times more enzyme activity than Fasciolopsis buski, Gastrodiscoides hominis and Echinostoma malayanum, from the pig Sus scrofa, and Fasciola gigantica, Gigantocotyle explanatum, Cotylophoron cotylophorum and Gastrothylax crumenifer, from the buffalo Bubalus bubalis. At least two peaks of activity at different levels of pH were obtained for each trematode examined. Both Gastrodiscoides hominis and Isoparorchis hypselobagri enzymes had three peaks of alkaline phosphatase activity. The optimum temperature for maximum enzyme activity was 40 degrees C, above which rapid inactivation occurred. At temperatures below 40 degrees C, the enzymes of fish and mammalian trematodes did not behave similarly; I. hypselobagri enzyme being active over a wider range of temperature (20 degrees-40 degrees C. Various concentrations of KCN and arsenate proportionately inhibited enzyme activity. NaF Did not significantly influence enzyme activity, while Mg++ and Co++ acted as activators. The extent of inhibition or activation of enzyme activity of different trematodes varied, probably due to species differences. Both inhibition and activation of I. hypselobagri enzyme was higher than in the case of other trematodes.  相似文献   

6.
The data on alkaline phosphatase activity in the liver of eight dominant species of Black Sea fishes are presented. The enzyme activity varies within a wide range; significant sexual differences have not been registered. The activity of the enzyme is similar in specimens of different age groups, but it decreases in old fishes. The enzyme activity increases in prespawning and spawning, which evidences for its participation in the process of sexual maturation of fish. Based on our and published data on the dependence of alkaline phosphatase activity on the degree of the environmental pollution, the enzyme can be recommended as a biomarker for bioindication, biotesting, and ichthyological monitoring.  相似文献   

7.
The effect of citrinin poisoning on rabbit kidney alkaline phosphatase was investigated. After seven days administration of citrinin (2 mg/kg body weight daily) the animals were sacrificed and the level of enzymes estimated in serum and kidney. Serum enzymes showed no variation in activity in the citrinin-treated animals, but in kidney, alkaline phosphatase activity decreased significantly. The decreased activity was mainly associated with the cytoplasmic fraction and in fractions Ib and II. The enzyme II obtained from citrinin-treated animal showed no kinetic difference in substrate specificity, inhibition by phenylalanine, phosphate, sodium-EDTA and Zn2+ ions, activation by Mg2+ ions, thermal inactivation and electrophoretic mobility to that of control Enzyme II. Immunological studies showed that the decrease in enzyme activity was due to existence of inactive enzyme protein. Hormones like cyclic AMP, prostaglandin E1 and parathyroid hormone reversed the decreased enzyme activity due to citrinin poisoning in mouse and rabbit. This study favours the possible existence of active and inactive forms of alkaline phosphatase in the system.  相似文献   

8.
Fish epidermal mucus and its components provide the first line of defense against pathogens. Little is known about the role of epidermal mucus enzymes in the innate immune system of fish species such as Arctic char (Salvelinus alpinus), brook trout (S. fontinalis), koi carp(Cyprinus carpio), striped bass (Morone saxatilis), haddock, (Melanogrammus aeglefinus), Atlantic cod (Gadus morhua) and hagfish (Myxine glutinosa). The epidermal mucus samples from these fish were analysed for the specific activities of various hydrolytic enzymes including lysozyme, alkaline phosphatase, cathepsin B and proteases and the enzyme levels were compared among the fish species. Of all the species hagfish mucus showed a high activity for lysozyme and proteases and koi carp mucus had the highest levels of alkaline phosphatase and cathepsin B. A wide variation in enzyme activities was observed among the seven species and also between species of same family such as Arctic char and brook trout (salmonidae), haddock and cod (gadidae). Only lysozyme levels showed a marked variation with salinity where seawater fish showed approximately two times higher lysozyme activity than freshwater-reared fish species. Characterization of proteases with specific inhibitors showed Arctic char, brook trout, haddock and cod having higher levels of serine over metalloproteases whereas koi carp and striped bass had higher levels of metalloproteases over serine proteases. In contrast, hagfish had almost equal proportion of both serine and metalloproteases. This study demonstrates variation in the level of hydrolytic enzymes in the epidermal mucus of fish. These results provide preliminary information for a better understanding of the role of epidermal mucus and its components in the fish innate immune system.  相似文献   

9.
The enzymatic activity (expressed as milliunits per milligram total proteins) of three intestinal brush-border membrane enzymes, leucine aminopeptidase, alkaline phosphatase and maltase, measured over a range of temperatures between 1.5 and 37 °C, has been found to be much higher in the Antarctic fish Pagothenia bernacchii than in the temperate fish Anguilla anguilla. To explain this experimental observation the apparent Michaelis-Menten constant, the maximal velocity, the activation energy values and the thermal stability of these three enzymes were measured. The apparent Michaelis-Menten constant values of leucine amino peptidase and alkaline phosphatase were different in the intestine mucosal homogenate of the two fish at each measured temperature (from a minimum of 2.5 to a maximum of 37 °C). However, the values found at 2.5 °C for the Antarctic species and 15 °C for the eel where comparable. Furthermore, its value was unchanged in eel intestine apical membranes, both in the presence and without enzyme lipid microenvironment. While the maximal enzymatic activities of the leucine aminopeptidase and maltase did not decrease without their enzyme lipid microenvironment, produced by treatment with Triton X-100, the impairment of alkaline phosphatase maximal activity cannot be significantly differentiated from a non-specific inhibitory effect of the detergent. The activation energy values of leucine amino peptidase, alkaline phosphatase and maltase were lower in the Antarctic fish (11.7, 5.6 and 11.8 kcal·mol-1, respectively) than in the eel (13.6, 7.6 and 13.1 kcal·mol-1, respectively). The thermal stability of alkaline phosphatase and maltase is different in Pagothenia bernacchii and Anguilla anguilla intestinal homogenate.Abbreviations BBM brush border membrane - E a activation energy - EGTA ethyleneglycol-bis-(-amino ethylether)N, N-tetraacetic acid - HEPES 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethane sulphonic acid - Kmapp apparent Michaelis-Menten constant - PMSF phenylmethyl-sulphonyl fluoride - TRIS TRIS (hydroxymethyl)-aminomethane  相似文献   

10.
Summary Though sialoprotein nature of alkaline phosphatase of certain mammalian organs has been suggested by biochemical investigations, no histochemical techniques have yet been applied to elucidate this concept. With this view, the alkaline phosphatase of stomach and intestine of a mollusc—Semperula maculata—was analysed histochemically to elucidate its sialoglycoprotein nature. The localisation of alkaline phosphatase and sialic acid was investigated by employing well known and standard histochemical techniques.Alkaline phosphatase was localised selectively in the brush border of the mucosa of stomach and intestine, it was Mg++ nonsensitive but showed a structure-linked sensitivity to phenylalanine. The sialomucins were selectively localised in the brush border, whereas the goblet cells contained both the sialomucins and sulfomucins, and the connective tissue of lamina propria contained sulfomucins. The localisation of alkaline phosphatase and sialomucins in the brush border uniquely coincided with each other. The alkaline phosphatase activity in the brush border was completely lost after neuraminidase treatment at 37.5° C for 16 h. Such effect of neuraminidase on alkaline phosphatase activity was pH dependent and controlled by velocity of reaction. Heat-inactivated neuraminidase showed no effect on alkaline phosphatase activity.These histochemical results have been interpreted as suggesting a sialoglycoprotein nature of alkaline phosphatase in the brush border, and sialic acid somehow seems to be essential for enzyme activity. These results, thus, indicate necessity of visualising some of the sialo-glycoproteins as macromolecules with catalytic activity.  相似文献   

11.
Alkaline phosphatase (E.C.3.1.3.1.) has been used as a marker for embryonal carcinoma cells which constitute the multipotential stem cells of the mouse teratoma. Studies by other investigators based on kinetics of thermal inactivation and L-phenylalanine inhibition have shown that the alkaline phosphatase of the teratoma differs from the mouse intestinal and liver isozymes, but resembles the isozymes of kidney and placenta. Since functional characterization of nonpurified enzymes is not the most accurate means for distinguishing different molecular forms of an enzyme, we have partially purified the enzymes from the ascitic (embryoid body) and solid tumor forms of the OTT-6050 teratoma line, and utilized the technique of electrophoresis in polyacrylamide gels to compare the teratoma enzyme with isozymes from kidney and placenta. Covalent 32PO4-labeling of the alkaline phosphatases and polyacrylamide gel electrophoresis in sodium dodecylsulfate was also used to compare the subunit molecular weights of the enzymes. The results indicate that the mouse teratoma enzyme is distinct from the kidney and placental isozymes. Since histochemical studies have localized the enzyme to the stem cell population of the teratoma, the results imply that stem cell alkaline phosphatase is a distinct isozyme. The embryoid bodies contain a second alkaline phosphatase which may correspond to the placental isozyme. This enzyme may be attributed to the outer cell layer of embryoid bodies of the ascitic tumor, since this cell type histochemically demonstrates alkaline phosphatase activity.  相似文献   

12.
Alkaline phosphatase of the Greenland seal was purified to homogeneity, using immobilized concanavalin A. The specific activity of the enzyme is 1200-1500 mu/mg protein. The molecular mass of alkaline phosphatase as determined by electrophoresis performed under non-denaturating conditions is 260 kD, whereas that determined in the presence of beta-mercaptoethanol and SDS is 70 kD, which points to the tetrameric type of the seal alkaline phosphatase molecule. Using the atomic adsorption method, it was demonstrated that the phosphatase molecule contains four zinc atoms. Some physico-chemical parameters of seal alkaline phosphatase (pH-dependence, effects of temperature and cations on the enzyme activity, pI, thermal stability) were determined.  相似文献   

13.
A comparative study of some physico-chemical properties of alkaline phosphatase of a human cell line, the EUE, with high level of enzyme and one of its clonal derivatives the E6D, with low activity, has been carried out. Electrophoretic analysis reveals a multiple banding pattern within each line and qualitative differences between the two lines. The alkaline phosphatase activity of the E6D cell extracts is almost completely inhibited by 5 × 10?2 M inorganic phosphate while in the EUE the enzymic activity is reduced to one third under these conditions. The enzymes of the two lines show also a different thermostability which is not referable to extrinsic factors, as demonstrated by mixing experiments. The time course of heat inactivation at 70°C suggests molecular heterogeneity in each line, and a prevalence of a thermostable fraction in the cells with low activity and a thermolabile one in those with high enzymic levels. A rough estimate of inactivation constants does not rule out the possibility that the molecular species in the two lines are the same but in different proportions. The cytological analysis confirms the relationship between the number of small acrocentric chromosomes and alkaline phosphatase levels. The significance of the biochemical data in relation to the proposed model of a gene dosage effect is discussed.  相似文献   

14.
Alkaline phosphatase activity in whitefly salivary glands and saliva   总被引:9,自引:0,他引:9  
Alkaline phosphatase activity was histochemically localized in adult whiteflies (Bemisia tabaci B biotype, syn. B. argentifolii) with a chromogenic substrate (5-bromo-4-chloro-3-indolylphosphate) and a fluorogenic substrate (ELF-97). The greatest amount of staining was in the basal regions of adult salivary glands with additional activity traced into the connecting salivary ducts. Other tissues that had alkaline phosphatase activity were the accessory salivary glands, the midgut, the portion of the ovariole surrounding the terminal oocyte, and the colleterial gland. Whitefly nymphs had activity in salivary ducts, whereas activity was not detected in two aphid species (Rhodobium porosum and Aphis gossypii). Whitefly diet (15% sucrose) was collected from whitefly feeding chambers and found to have alkaline phosphatase activity, indicating the enzyme was secreted in saliva. Further studies with salivary alkaline phosphatase collected from diet indicated that the enzyme had a pH optimum of 10.4 and was inhibited by 1 mM cysteine and to a lesser extent 1 mM histidine. Dithiothreitol, inorganic phosphate, and ethylenediaminetetraacetic acid (EDTA) also inhibited activity, whereas levamisole only partially inhibited salivary alkaline phosphatase. The enzyme was heat tolerant and retained approximately 50% activity after a 1-h treatment at 65 degrees C. The amount of alkaline phosphatase activity secreted by whiteflies increased under conditions that stimulate increased feeding. These observations indicate alkaline phosphatase may play a role during whitefly feeding.  相似文献   

15.
Extensive application of pesticide in agricultural field affects the enzymatic activity of non-target animals, including fishes. In this study, the impact of sublethal concentration of fenvalerate on marker enzymes of freshwater Zebra fish was evaluated. Pesticide-induced stress can specifically affect non target fishes, through elevated level of reactive oxygen species which is responsible for biochemical, cell metabolism and physiological activities. The oxidative stress mediated by fenvalerate at sub lethal concentrations after 28 days of exposure of Zebra fish. Following 28 days of exposure of pesticide, catalase, superoxide dismutase, aspartate amino transferases, alanine amino transferase, alkaline phosphatase and acid phosphatase were assessed. Results revealed reduction of superoxide dismutase activity after 28 days of exposure in sub lethal concentration of fenvalerate in liver and gills. In liver, catalase activity was found to be less in fenvalerate exposed fish than control fish. In liver, increase of 75.75% aspartate amino transferase and 38% increase in alanine amino transferase in gills. SGPT activity was relatively higher than SGOT suggests more contribution of phyruvalate than oxaloacetate formation. Fenvalerate induced changes in acid phosphatase and alkaline phosphatase activity in the liver and gills of Zebra fish after four weeks of exposure. Fenvalerate induced expression of various stress proteins in gill, liver, followed by muscle. Some proteins lost its intensity due to fenvalerate toxicity. Result revealed that enzyme assays and SDS-PAGE analysis for protein subunits determination is relevant tool to monitor stress in freshwater ecosystem. The findings suggest that in monitoring fenvalerate toxicity programme, enzyme activities can be potent diagnostic tool for fenvalerate induced toxicity.  相似文献   

16.
17.
Sun L  Martin DC  Kantrowitz ER 《Biochemistry》1999,38(9):2842-2848
Escherichia coli alkaline phosphatase catalyzes both the nonspecific hydrolysis of phosphomonoesters and a transphosphorylation reaction in which phosphate is transferred to an alcohol via a phosphoseryl intermediate. The rate-determining step for the wild-type enzyme is pH dependent. At alkaline pH, release of the product phosphate from the noncovalent enzyme-phosphate complex determines the reaction rate, whereas at acidic pH hydrolysis of the covalent enzyme-phosphate complex controls the reaction rate. When the lysine at position 328 was substituted with a cysteine (K328C), the rate-determining step at pH 8.0 of the mutant enzyme was altered so that hydrolysis of the covalent intermediate became limiting rather than phosphate release. The transphosphorylation activity of the K328C enzyme was selectively enhanced, while the hydrolysis activity was reduced compared to that of the wild-type enzyme. The ratio of the transphosphorylation to the hydrolysis activities increased 28-fold for the K328C enzyme in comparison with the wild-type enzyme. Several other mutant enzymes for which a positive charge at the active center is removed by site-specific mutagenesis share this characteristic of the K328C enzyme. These results suggest that the positive charge at position 328 is at least partially responsible for maintaining the balance between the hydrolysis and transphosphorylation activities and plays an important role in determining the rate-limiting step of E. coli alkaline phosphatase.  相似文献   

18.
Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR   总被引:1,自引:0,他引:1  
Chloride binding to alkaline phosphatase from Escherichia coli has been monitored by 35Cl NMR for the native zinc enzyme and by 113Cd NMR for two Cd(II)-substituted species, phosphorylated Cd(II)6 alkaline phosphatase and unphosphorylated Cd(II)2 alkaline phosphatase. Of the three metal binding sites per enzyme monomer, A, B, and C, only the NMR signal of 113Cd(II) at the A sites shows sensitivity to the presence of Cl-, suggesting that Cl- coordination occurs at the A site metal ion. From the differences in the chemical shift changes produced in the A site 113Cd resonance for the covalent (E-P) form of the enzyme versus the noncovalent (E . P) form of the enzyme, it is concluded that the A site metal ion can assume a five-coordinate form. The E-P form of the enzyme has three histidyl nitrogens as ligands from the protein to the A site metal ion plus either two water molecules or two Cl- ions as additional monodentate ligands. In the E . P form, there is a phosphate oxygen as a monodentate ligand and either a water molecule or a Cl- ion as the additional monodentate ligand. The shifts of the 113Cd NMR signals of the unphosphorylated Cd(II)2 enzyme induced by Cl- are very similar to those induced in the E-P derivative of the same enzyme, supporting the conclusion that the phosphoseryl residue is not directly coordinated to any of the metal ions. Specific broadening of the 35Cl resonance from bulk Cl- is induced by Zn(II)4 alkaline phosphatase, while Zn(II)2 alkaline phosphatase is even more effective, suggesting an influence by occupancy of the B site on the interaction of monodentate ligands at the A site. A reduction in this quadrupolar broadening is observed upon phosphate binding at pH values where E . P is formed, but not at pH values where E-P is the major species, confirming a specific interaction of Cl- at the A site, the site to which phosphate is bound in E . P, but not in E-P. For the zinc enzyme, a significant decrease in phosphate binding affinity can be shown to occur at pH 8 where one monomer has a higher affinity than the other.  相似文献   

19.
A mutant strain of Serratia marcescens produces a constitutive enzyme (phosphatase F), which differs from the alkaline phosphatase of Escherichia coli in the following characteristics: one enzyme species with higher mobility on electrophoresis, less heat stability, no rapid reactivation following exposure to high hydrogen ion concentrations, no hybridization with E. coli enzyme in vitro, little activation at increased ionic strength, greater sensitivity to EDTA inhibition, and no cross reaction of rabbit anti-serum with the E. coli enzyme.  相似文献   

20.
Alkaline phosphatase (EC 3.1.3.1) bound to trophoblastic cells in rat placenta is activated by Mg2+ and inhibited by Zn2+ in the same way as is found with partially purified soluble alkaline phosphatase in the same tissue (PetitClerc, C., Delisle, M., Martel, M., Fecteau, C. & Brière, N. (1975) Can. J. Biochem. 53, 1089-1100). In studies done with tissue sections (6-10 micron), it is shown that alkaline phosphatase activity and labelling of active sites by orthophosphate are lost during incubation with ethanolamine at pH 9.0. Addition of Mg2+ causes total recovery of catalytic activity and active sites labelling. Zn2+ displaces and replaces at the Mg2+ binding sites. The affinity for both ions is similar, and dissociation of Zn2+ from the enzyme is a very slow process, even in the presence of Mg2+. The Zn2+-alkaline phosphatase and Mg2+-alkaline phosphatase, which only differ by the ion bound to an apparent modulator site, have the same catalytic activity at pH less than 7.0, but the Zn2+ species has little activity at alkaline pH. Phosphorylation of the enzyme by orthophosphate indicates that with both enzyme species phosphoryl intermediate does not accumulate at alkaline pH. These results suggest that with orthophosphate, the phosphorylation step is rate determining for both enzymes, and that Zn2+ affects this step to a much greater extent. It is proposed that Zn2+ and Mg2+ regulate alkaline phosphatase in rat placenta. The concentration of both ions in maternal serum and placenta suggest that such a mechanism could exist in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号