首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of continuous culture techniques 60 years ago and the subsequent formulation of theory and the diversification of experimental systems revolutionised microbiology and heralded a unique period of innovative research. Then, progressively, molecular biology and thence genomics and related high-information-density omics technologies took centre stage and microbial growth physiology in general faded from educational programmes and research funding priorities alike. However, there has been a gathering appreciation over the past decade that if the claims of systems biology are going to be realised, they will have to be based on rigorously controlled and reproducible microbial and cell growth platforms. This revival of continuous culture will be long lasting because its recognition as the growth system of choice is firmly established. The purpose of this review, therefore, is to remind microbiologists, particularly those new to continuous culture approaches, of the legacy of what I call the first age of continuous culture, and to explore a selection of researches that are using these techniques in this post-genomics age. The review looks at the impact of continuous culture across a comprehensive range of microbiological research and development. The ability to establish (quasi-) steady state conditions is a frequently stated advantage of continuous cultures thereby allowing environmental parameters to be manipulated without causing concomitant changes in the specific growth rate. However, the use of continuous cultures also enables the critical study of specified transition states and chemical, physical or biological perturbations. Such dynamic analyses enhance our understanding of microbial ecology and microbial pathology for example, and offer a wider scope for innovative drug discovery; they also can inform the optimization of batch and fed-batch operations that are characterized by sequential transitions states.  相似文献   

2.
Inhibition kinetics of phenol degradation from unstable steady-state data   总被引:4,自引:0,他引:4  
Multiplicity of steady states of a continuous culture with an inhibitory substrate was used to estimate kinetic parameters under steady-state conditions. A continuous culture of Pseudomonas cepacia G4, using phenol as the sole source of carbon and energy, was overloaded by increasing the dilution rate above the critical dilution rate. The culture was then stabilized in the inhibitory branch by a proportional controller using the carbon dioxide concentration in the reactor exhaust gas as the controlled variable and the dilution rate as the manipulated variable. By variation of the set point, several unstable steady states in the inhibitory branch were investigated and the specific phenol conversion rates calculated. In addition, phenol degradation was investigated under substrate limitation (chemostat operation).The results show that the phenol degradation by P. cepacia can be described by the same set of inhibition parameters under substrate limitation and under high substrate concentrations in the inhibitory branch. Biomass yield and maintenance coefficients were identical. Fitting of the data to various inhibition models resulted in the best fit for the Yano and Koga equation. The well-known Haldane model, which is most often used to describe substrate inhibition by phenol, gave the poorest fit. The described method allows a precise data estimation under steady-state conditions from the maximum of the biological reaction rate up to high substrate concentrations in the inhibitory branch. Inhibition parameter estimation by controlling unstable steady states may thus be useful in avoiding discrepancies between data generated by batch runs and their application to continuous cultures which have been often described in the literature. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 567-576, 1997.  相似文献   

3.
Hybridoma cells utilize a pair of complementary and partially substitutable substrates, glucose and glutamine, for growth. It has been shown that cellular metabolism shifts under different culture conditions. When those cultures at different metabolic states are switched to a continuous mode, they reach different steady states under the same operating conditions. A cybernetic model was constructed to describe the complementary and partial substitutable nature of substrate utilization. The model successfully predicted the metabolic shift and multiple steady-state behavior. The results are consistent with the experimental observation that the history of the culture affects the resulting steady state.  相似文献   

4.
Steady states of a continuous culture with an inhibitory substrate were used to estimate kinetic parameters under substrate limitation (chemostat operation). Pure cultures of an indigenous Pseudomonas aeruginosa were grown in continuous culture on phenol, the sole source of carbon and energy, at dilution rates of 0.010 to 0.20 h- 1. Using different dilution rates, several steady states were investigated and the specific phenol consumption rates were calculated. In addition, phenol degradation was investigated by increasing the dilution rate above the critical dilution rate (washout cultivation). The results showed that the specific phenol consumption rate increased with increased dilution rate at steady state and that the degradation by Pseudomonas aeruginosa can be described by simple substrate inhibition kinetics under substrate limitation but cannot be described by simple substrate inhibition kinetics under washout cultivation. Fitting of the steady-state data from continuous cultivation to various inhibition models resulted in the best fit for the Yano and Koga kinetic inhibition model. The rs max value of 0.278 mg/mg/h obtained from the Yano and Koga equation was comparable to the experimentally calculated rs max value of 0.283 mg/mg/h obtained under washout cultivation.  相似文献   

5.
From long-term chemostat experiments, variants ofPseudomonas aeruginosa JB2 were obtained which exhibited altered properties with respect to the metabolism of 2,5-dichlorobenzoic acid (2,5-DBA). Thus, unlike the original strain JB2-WT, strain JB2-var1 is able to grow in continuous culture on 2,5-DBA as the sole limiting carbon and energy source. Yet, at a dilution rate of 0.07 h–1 and a dissolved oxygen concentration of 12 µM, even with this strain no steady states with 2,5-DBA alone could be established in continuous cultures. Yet another strain was obtained after prolonged continuous growth of JB2-var1 in the chemostat. It has improved 2,5-DBA degrading capabilities which become apparent only during growth in continuous culture: a lower apparent K m for 2,5-DBA and lowered steady-state residual concentrations of 2,5 DBA. Although with this strain steady states were obtained at oxygen concentrations as low as 11 µM, at further lowered concentrations this was no longer possible. In C-limited continuous cultures of JB2-var1 or JB2-var2, addition of benzoic acid (BA) to the feed reduced the amounts of 2,5-DBA degraded, which was most apparent at low oxygen concentrations (< 30 µM). At higher dissolved oxygen concentrations the addition of BA resulted in increasing cell-densities but did not affect the residual steady state concentration of 2,5-DBA. Indeed, whole cell suspensions from chemostat cultures grown on BA plus 2,5-DBA did show a lower apparent affinity for 2,5-DBA than those from cultures grown on 2,5-DBA alone. These results indicate that in environments with low oxygen concentrations and alternative, more easily degradable, substrates the degradation rates of chloroaromatic compounds by aerobic organisms may be negatively affected.Abbreviations BA benzoic acid - 2,5-DBA 2,5-dichlorobenzoic acid - QO 2 max maximum specific respiration rate  相似文献   

6.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH+4 is in equiblibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in gamma-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of gamma-glutamyl transferase activities without and with addition of 60 mM Mg2+. Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH+4, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH+4 produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

7.
Heterotrophic growth at steady state and during transient states caused by the sudden change of the concentration of the limiting factor in the feed medium was investigated experimentally for continuous cultures ofAquaspirillum autotrophicum limited by pyruvate. A model for describing the growth at steady state was selected from three unstructured models after statistical tests of the data. This model postulates that the growth yield increases linearly with the growth rate. Growth during transitions where the substrate remained limiting at all times was fitted with first-order kinetics. Theoretical predictions of these kinetics were derived from the unstructured models used to describe steady state. The predicted rate coefficients of the transients were compared to the experimental coefficients. It appeared that the model which best described steady-state growth also provided the best predictions for growth during the transient state. It is a widespread opinion that unstructured models are adequate to describe growth under steady-state conditions but not to predict transitions in continuous culture. However, for the particular case studied here, no higher degree of complexity was required to describe transitions, provided the growth of the culture was always limited by the substrate.  相似文献   

8.
The conditions that precede the onset of autonomous oscillations in continuous yeast cultures were studied in three different types of experiments. It was found that the final state of the culture depended on the protocol used to start up the reactor. Batch cultures, switched to continuous operation at different stages of the batch growth curve, all exhibited similar dynamics-ethanol depletion followed by autonomous oscillations. Small perturbations of the distribution of states in the reactor, achieved by addition of externally grown cells, were able to quench the oscillatory dynamics. Reaching the desired operating point by slow dilution rate changes gave rise to different final states, two oscillatory states and one steady state, depending on the rate of change in dilution rate. The multiplicity of stable states at a single operating point is not explained by any current distributed model and points toward a segregated mechanism of these oscillations.  相似文献   

9.
The theoretical dynamic characteristics of an isothermal continuous flow stirred tank enzyme reactor (CFSTER) operating on two substrates are investigated. Under certain conditions multiple steady states are possible; namely, with an enzyme which binds with the two substrates sequentially. The occurrence of multiple steady states is found to be primarily dictated by three dimensionless parameters which incorporate rate law constants. The global stability of certain steady states is examined by numerically solving the transient material balance on the CFSTER. The effect of recycle on the dynamics of an isothermal plug flow enzyme reactor (PFER) is also studied. A general conclusion indicated by this work is that any open isothermal reaction system wherein the reaction rate law passes through a maximum with increasing substrate concentration and where back mixing occurs with exhibit multiple steady-state behavior in some operating range.  相似文献   

10.
 Sulphur formation by the obligately chemolithoautotrophic Thiobacillus o and Thiobacillus neapolitanus was studied in aerobic, substrate-limited continuous cultures. The performance of transient-state and steady-state cultures was compared using different methods for measuring sulphur production. Below a dilution rate (D) of 0.3 h-1 (at 50% air saturation), sulphate-producing steady states were obtained, and cultures grown with sulphide or thiosulphate (at D=0.06 h-1) showed similar characteristics (e.g. cell yields, oxidation capacities and CO2-fixation capacities). Elemental sulphur was a major product above D=0.3 h-1, but steady states were difficult to achieve, because of adherence of sulphur to the fermentor surfaces and the accumulation of sulphide. These problems could be circumvented using transient-state experiments of 1 h. It was then found that elemental sulphur was formed under oxygen limitation or at high substrate load. The rates of sulphur formation obtained by sulphur analysis agreed with the values calculated from stoichiometric balances. Sulphide and thiosulphate proved to be equivalent substrates for both Thiobacillus species during elemental sulphur formation under the conditions tested. It is concluded that transient-state cultures of thiobacilli, pregrown as sulphate-producing steady-state cultures, provide experimental conditions for the quantitative assessment of sulphur formation from (labile) sulphide and from thiosulphate. Received: 15 May 1995 / Received revision: 4 August 1995 / Accepted: 22 August 1995  相似文献   

11.
Mammalian cells grown in suspension produce waste metabolites such as lactate, alanine, and ammonia, which reduce the yield of cell mass and the desired product on the nutrients supplied. Previous studies (Cruz et al., 1999; Europa et al., 2000; Follstad et al., 1999) have shown that the cells can be made to alter their metabolism by starving them on their nutrients in continuous cultures at low dilution rates or starting the culture as a fed-batch. This leads to multiple steady states in continuous reactors, with some states being more favorable than others. Mathematical models that take into account the metabolic regulation that leads to these multiple steady states are invaluable tools for bioreactor control. In this article we present a cybernetic modeling strategy in which Metabolic Flux Analysis (MFA) is used to guide the cybernetic formulation. The hybridoma model presented as a result of this strategy considers the partially substitutable, partially complementary nature of glucose and glutamine. The choice of competitions within the network is guided by MFA and the model is successful in explaining the three multiple steady states observed. The cybernetic model though identified for the hybridoma experiments of Hu and others (Europa et al., 2000) seem generally applicable to mammalian systems as it captures the pathways that are common to mammalian cells grown in suspension. The model presented here could be used for start-up strategies for continuous reactors and model-based feedback control for maintaining high productivity of the reactor.  相似文献   

12.
The steady-state behavior of a continuous bioreactor containing antibiotic-resistant recombinant cells has been investigated. Only the plasmid-free cell is susceptible to and killed by antibiotics. A Monod form of specific death rate was found to simulate quite well the experimental death rates of various cells due to antibiotics. The stability characteristics, including bifurcation of the possible steady states, are examined. Appropriate numerical illustrations for the steady-state characteristics have been provided. Theoretically, two coexistence steady states (CO), three partial washout steady states (PW), and one total washout steady state (TW) are feasible, but only one CO, one PW, and one TW were realized. When antibiotic consumption is not extremely significant the CO can exist over one or two ranges of dilution rates depending upon the antibiotic concentration in the feed. The CO is globally stable. Whenever the PW and/or the TW exist(s) together with the CO they are unstable. Sensitivity analyses for several key kinetic parameters have been made. The rate at which the plasmid-bearing cells revert to the plasmid-free cells has the most significant effect on the antibiotic susceptibility of the system. Some simplified optimization calculations for maximum profit have been carried out.  相似文献   

13.
Aim of the present study was to evaluate the effect of exogenous additions of 1,3-propanediol (1,3-PDO) on microbial growth and metabolites production of Clostridium butyricum VPI 1718 strain, during crude glycerol fermentation. Preliminary batch cultures in anaerobic Duran bottles revealed that early addition of 1,3-PDO caused growth cessation in rather low quantities (15?g/L), while 1,3-PDO additions during the middle exponential growth phase up to 70?g/L resulted in an almost linear decrease of the specific growth rate (μ), accompanied by reduced glycerol assimilation, with substrate consumption being used mainly for energy of maintenance requirements. During batch trials in a 3-L bioreactor, the strain proved able to withstand more than 70?g/L of both biologically produced and externally added 1,3-PDO, whereas glycerol assimilation and metabolite production were carried on at a lower rate. Adaptation of the strain in high 1,3-PDO concentration environments was validated during its continuous cultivation with pulses of 1,3-PDO in concentrations of 31 and 46?g/L, where no washout phenomena were noticed. As far as C. butyricum cellular lipids were concerned, during batch bioreactor cultivations, 1,3-PDO addition was found to favor the biosynthesis of unsaturated fatty acids. Also, fatty acid composition was studied during continuous cultures, in which additions of 1,3-PDO were performed at steady states. Lipids were globally more saturated compared to batch cultures, while by monitoring of the transitory phases, it was noticed that the gradual diol washout had an evident impact in the alteration of the fatty acid composition, by rendering them more unsaturated.  相似文献   

14.
We examine the conditions necessary for the emergence of complex dynamic behavior in systems of microbial competition. In particular, we study the effect of spatial heterogeneity and substrate-inhibition on the dynamics of such a system. This is accomplished through the study of a mathematical model of two microbial populations competing for a single nutrient in a configuration of two interconnected chemostats. Microbial growth is assumed to follow substrate-inhibited kinetics for both species. Such a system with sterile feed has been shown in a previous work to exhibit stable periodic states. In the present work we study the system for the case of non-sterile feed, i.e., when the two species are present in the feed of the chemostats. The analysis is done by numerical bifurcation theory methods. We demonstrate that, in addition to periodic states, the system possesses stable quasi-periodic states resulting from Neimark-Sacker bifurcations of limit cycles. Also, periodic states may undergo successive period doublings leading to periodic states of increasing period and indicating that chaotic states might be possible. Multistability is also observed, consisting in the coexistence of several stable steady states and possibly stable periodic or quasi-periodic states for given operating conditions. It appears that substrate-inhibition, spatial heterogeneity and presence of microorganisms in the inflow are all necessary conditions for complex dynamics to arise in a microbial system of pure and simple competition.  相似文献   

15.
Glucose-stat, a glucose-controlled continuous culture   总被引:2,自引:0,他引:2  
A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration.  相似文献   

16.
17.
Glucose-stat, a glucose-controlled continuous culture.   总被引:4,自引:3,他引:1       下载免费PDF全文
A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration.  相似文献   

18.
The paper summarizes the author’s theoretical and experimental researches aimed at studying the rule of stable coexistence of interacting microbial populations within same trophic level. Populations of yeast and algae interact in open continuous cultures through regulating factors (RFs), which come together by the ability to be released or taken up by a microbial population and affect the growth of this and other population. Theoretical and experimental studies show that in steady state, the number of coexisting species is not greater than the number of RFs. Two-dimensional regions with different resultant species compositions of experimental equilibrium communities are plotted in the coordinates of “input levels of RFs”. This is perhaps the first study showing that the background steady-state levels of RFs in the system are not related to their input levels. This effect has been termed autostabilization of RFs, and its theoretical basis has been developed. A new criterion of intra- and inter-population microbial interactions has been introduced for RFs—growth acceleration response to a change in population density. Based on the proposed new criterion, experimental and theoretical estimates of the intensity and the sign of interactions between populations are given, allowing the quantification of their complex relationships, which was earlier unattainable. An integrated approach to detection of RFs has been proposed based on this criterion and the autostabilization effect.  相似文献   

19.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

20.
Kinetics of electron-donor oxidation, storage-polymer formation and growth were studied in continuous cultures ofChromatium under conditions of balanced growth as well as during transient states.Under steady-state conditions, glycogen was accumulated at all dilution rates. This observation is consistent with previously postulated ideas about an ineffective glycogen-synthesis regulation.Upon perturbing the steady states, brought about by injection of extra sulfide into steady-state cultures, the following phenomena were observed immediately, irrespective of the dilution rate: the specific rate of sulfide oxidation increased to the value found in batch cultures, the sulfur-oxidation rate was decreased, the specific glycogen-synthesis rate increased, the increment being higher the lower the dilution rate, but an increase in the specific growth rate, if any, was below the limit of detection. The inverse relationship between the specific rates of glycogen synthesis and growth after removing the substrate limitation is to be explained by a shortage of intermediates, rather than by a growth-rate dependent intrinsic glycogen-synthesis limitation, because upon complete inhibition of growth a further increase in the rate of glycogen synthesis was observed. Essayed in this way, identical glycogen-synthesis rates were found at all dilution rates.Competitive advantages of such an apparently not adapted metabolism in environments with diurnal fluctuations in substrate concentrations are discussed.Non-Standard Abbreviations Nc cell nitrogen - TS total sugar - PHB poly--hydroxybutyrate - D dilution rate - SR reservoir concentration of the growth-limiting substrate - CAP chloramphenicol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号