首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of orally administered l-carnitine on the quality of semen obtained from stallions with different semen qualities was investigated. Four stallions with proven fertility (high motility group, HM) and with normal seminal characteristics (>50% progressive motility and > 80 x 10(6) spermatozoa/ml), and four questionable breeders (low motility group, LM) with <50% of sperm progressive motility and < 80 x 10(6) spermatozoa/ml, received p.o. 20 g of l-carnitine for 60 days. Blood and semen samples were collected before treatment (T0) and after 30 (T1) and 60 days (T2). Semen evaluation were performed on five consecutive daily ejaculates (n = 120 ejaculates) and conventional semen analysis was carried out on each ejaculate, both at collection and after refrigeration for 24, 48, and 72 h. Furthermore l-carnitine, acetylcarnitine, pyruvate, and lactate concentrations, and carnitine acetyltransferase activity (CAT) were determined both in raw semen and seminal plasma. There were an increase in progressive motile spermatozoa only in the LM group (26.8 +/- 12.9, 39.1 +/- 15.5, and 48.8 +/- 8.6 for T0, T1, and T2, respectively). Free seminal plasma carnitine concentration was higher in the LM group compared to the HM one. Both pyruvate and lactate were higher in the LM group. Raw semen and seminal plasma carnitine and acetylcarnitine levels correlate positively with both sperm concentration and progressive motility; moreover, acetylcarnitine content was positively correlated with total motile morphologically normal spermatozoa. In conclusion, oral administration of l-carnitine to stallions with questionable seminal characteristics may improve spermatozoa kinetics and morphological characteristics; whereas, it seem to be ineffective in normospermic animals.  相似文献   

2.
The rabbit is considered to be a valuable laboratory animal. We compared 2% acetamide and glycerol as cryoprotectants in egg-yolk diluent for ejaculated Japanese white rabbit spermatozoa to improve sperm cryopreservation methods. Fertility through artificial insemination, forward progressive motility and plasma membrane integrity of the post-thaw spermatozoa were examined. The rates of forward progressive motility and plasma membrane integrity of the spermatozoa frozen with acetamide (27.1 +/- 8.3% and 24.5 +/- 6.5%) were significantly (P < 0.05) higher than those of the spermatozoa frozen with glycerol (16.3 +/- 10.9% and 14.3 +/- 7.6%). Though there was no significant difference in the kindling rates, the litter size of females inseminated with spermatozoa frozen with acetamide (6.0 +/- 1.1) were significantly (P < 0.05) higher than those of spermatozoa frozen with glycerol (3.0 +/- 0.4). The results indicate that 2% acetamide has a higher cryoprotective effect than 2% glycerol for sperm cryopreservation in the Japanese white rabbit.  相似文献   

3.
Although the development of semen cryopreservation in the African elephants (Loxodonta africana) has been accomplished, effective procedures for cryopreservation of Asian elephant (Elephas maximus) spermatozoa have not been established. In the present study, we investigate the freezing methods for conservation of Asian elephant spermatozoa under field conditions and identify the most suitable freezing protocols which provide acceptable post-thaw semen quality. Semen was collected from two Asian elephant bulls (EM1 and EM2, 10 ejaculates from each bull) by manual manipulation and were assessed for volume, pH, sperm cell concentration, and progressive motility. Eight out of 20 ejaculates were of acceptable quality (progressive motility >/= 60%), and were used for cryopreservation studies. Semen were frozen in TEST + glycerol, TEST + DMSO, HEPT + glycerol, or HEPT + DMSO. The post-thaw progressive sperm motilities were assessed, and sperm cells were stained with PI and FITC-PNA for membrane and acrosomal integrity assessment using flow cytometry. Post-thaw progressive motility of spermatozoa (EM1: 42.0 +/- 4.3%; EM2: 26.0 +/- 17.3%) and the percentage of membrane and acrosome intact spermatozoa (EM1: 55.5 +/- 8.1%; EM2: 46.3 +/- 6.4%) cryopreserved in TEST + glycerol were significantly higher than (P < 0.05) those frozen in the other medium investigated choices for cryopreservation of Asian elephant spermatozoa. The data support the use of TEST + glycerol as an acceptable cryopreservation media of Asian elephant semen for the establishment of sperm banks.  相似文献   

4.
Antioxidants partially ameliorated the negative effects of reactive oxygen species (ROS) produced during cryopreservation. The objective of the present study was to investigate the effect of cysteine and a water-soluble vitamin E analogue on the quality of frozen-thawed epididymal cat spermatozoa. Epididymal spermatozoa were collected from eight male cats and divided into three aliquots; these were resuspended with a tris egg yolk extender I (EE-I), or the same extender supplemented with 5mM dl-cysteine (EE-C) or with 5mM of a water-soluble vitamin E analogue (EE-Ve). Prior to the freezing step, sperm suspensions were added to the extender with Equex STM paste (EE-II). Sperm motility, progressive motility, membrane integrity, and acrosome status were evaluated at collection, after cooling, and at 0, 2, 4, and 6h post-thaw. Sperm DNA integrity was evaluated at 0 and 6h post-thaw. Relative to the control group, supplementation with vitamin E improved (P<0.05) post-thaw motility (69.4+/-5.6%), progressive motility (3.9+/-0.3), and membrane integrity (65.1+/-8.1%) immediately after thawing, whereas cysteine supplementation improved (P<0.05) post-thaw motility after 2h of incubation (53.8+/-12.2%) and DNA integrity after 6h (84.1+/-4.4%). However, neither antioxidant significantly increased the acrosome integrity of frozen-thawed spermatozoa. In conclusion, cysteine or vitamin E supplementation of tris egg yolk extender improved motility, progressive motility and integrity of the sperm membrane and DNA of frozen-thawed epididymal cat spermatozoa.  相似文献   

5.
In an effort to improve the number of functional spermatozoa following sex-sorting and cryopreservation, the effects on in vitro sperm characteristics of the additives: (i) catalase (pre-sorting); (ii) cholesterol-loaded cyclodextrins (CLCs; pre-sorting); and (iii) seminal plasma (post-thawing) were investigated. For all experiments, spermatozoa (three males, n=3 ejaculates/male) were processed using a high speed flow cytometer before cryopreservation, thawing and incubation for 6h. Catalase had no effect (P>0.05) on post-thaw motility characteristics (as measured by CASA) of sex-sorted ram spermatozoa, but pre-sort addition of CLCs reduced (P<0.05) sperm quality after post-thaw incubation for 0 h (motility), 3h (motility, average path velocity, viability and acrosome integrity) and 6h (motility, average path and curvilinear velocity, straightness, linearity, viability and acrosome integrity). Seminal plasma had a differential effect (P<0.001) on sex-sorted and non-sorted spermatozoa. Post-thaw supplementation of increasing levels of seminal plasma caused all motility characteristics of sex-sorted, frozen-thawed spermatozoa to decline (P<0.05); conversely, non-sorted, frozen-thawed spermatozoa exhibited improvements (P<0.05) in motility, viability, acrosome integrity and mitochondrial respiration. In summary, incorporation of catalase, CLCs and seminal plasma into the sorting protocol failed to improve post-thaw sperm quality and, consequently efficiency of sex-sorting of ram spermatozoa. The paradoxical effect of seminal plasma supplementation on the in vitro characteristics of ram spermatozoa provides further evidence that sex-sorting by flow cytometry produces a selected population of cells with different functions compared with non-sorted spermatozoa.  相似文献   

6.
Tuli RK  Holtz W 《Theriogenology》1994,42(3):547-555
Forty ejaculates (20 for each of 2 experiments) were collected from 4 Boer goat bucks at weekly intervals to study the effect of glycerolization procedure and removal of seminal plasma on progressive motility, percent live spermatozoa and release of glutamic oxaloacetic transaminase (GOT) before and after the freezing of semen. Stepwise glycerolization at 37 degrees C gave higher progressive motility and percentage of live spermatozoa both before freezing and after thawing than onestep glyceroliza-tion at 37 degrees C or stepwise extension with glycerol being added after cooling to 5 degrees C. The GOT-release was reduced before freezing and after thawing of semen with stepwise glycerolization (P < 0.05). Progressive motility and the percentage of live spermatozoa were higher (P < 0.05) after the freezing of whole semen than in washed spermatozoa. The concentration of GOT in the extra-cellular fluid was lower in washed spermatozoa prior to freezing (P < 0,05); but after thawing, the washed spermatozoa released more GOT than spermatozoa in whole semen. Removal of seminal plasma prior to freezing spermatozoa in an extender containing egg yolk had an unfavorable effect on their post-thaw motility and integrity.  相似文献   

7.
The aim of this study was to determine if dead spermatozoa reduced motility or membrane integrity of live spermatozoa in fresh and cooled-stored equine semen. Three ejaculates from each of three stallions were centrifuged and virtually all seminal plasma was removed. Spermatozoa were resuspended to 25 x 10(6) spermatozoa/ml with EZ-Mixin CST extender and 10% autologous seminal plasma, then divided into aliquots to which 0 (control), 10, 25, 50, or 75% (v/v) dead spermatozoa were added. Dead spermatozoa preparations contained 25 x 10(6) spermatozoa/ml and 10% seminal plasma from pooled ejaculates of the three stallions, in EZ-Mixin CST extender. Spermatozoa were killed in the pooled ejaculates by repeated freezing and thawing, then stored at -20 degrees C until warmed to 37 degrees C and mixed with aliquots of fresh spermatozoa to be cooled and stored in an Equitainer for 24h. Motion characteristics (% total motility (MOT), % progressive motility (PMOT), and mean curvilinear velocity (VCL)) for fresh and 24h cooled samples were determined using a computerized spermatozoal motion analyzer. The presence of up to 75% dead spermatozoa did not adversely affect MOT or PMOT of live spermatozoa in either fresh or cooled-stored semen. However, VCL and the percentage of membrane-intact spermatozoa were reduced compared to control samples when 75% (v/v) dead spermatozoa were added. Membrane integrity, as assessed by staining with carboxyfluoresein diacetate-propidium iodide, was highly correlated (r>0.8; P<0.001) with MOT and PMOT in both fresh and cooled-stored semen samples. Results of this study have application to the processing of both cooled and frozen equine semen.  相似文献   

8.
Semen samples were collected from six fertile stallions and seven stallions with unexplained infertility. Percentages of motile sperm (77.5 +/- 11.3 versus 67.5 +/- 12.2, P = 0.2), and progressively motile sperm (70.8 +/- 13.6 versus 60.7 +/- 14.0, P = 0.2) were similar between fertile and subfertile stallions, respectively. Morphologic characteristics in ejaculates of control and affected stallions (% normal: 60.2 +/- 18.2 versus 52.9 +/- 11.3, P = 0.4; % abnormal heads 7.3 +/- 4.8 versus 12.1 +/- 5.0, P = 0.11; and % abnormal acrosomes 1.6 +/- 2.1 versus 3.0 +/- 3.4, P = 0.4) did not differ. After incubation with the calcium ionophore A23187, acrosome reaction rate of sperm from fertile stallions was 96 +/- 2.8% whereas only 2.9 +/- 2.5% of sperm from stallions with unexplained subfertility had acrosome reacted (P < 0.001). Molar amounts of cholesterol and phospholipid in whole sperm and seminal plasma did not differ (P > 0.1) between fertile and subfertile stallions. However, the molar ratio of cholesterol-to-phospholipid was 2.5 times greater in the seminal plasma (P = 0.09) and 1.9 times greater (P = 0.009) in whole sperm of subfertile stallions compared to fertile stallions.  相似文献   

9.
The supplementation of the freezing diluent with 3 amino acids (glutamine, proline and histidine) and 1 amino acid-related compound (betaine) in preserving stallion spermatozoa diluted in INRA82 extender containing 2.5% (v/v) glycerol and 2% (v/v) egg yolk (control extender) during freezing and thawing was studied at 0, 40, 80, 120 and 160 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 1). Glutamine and proline were studied at 0, 10, 20, 30, 40, 50, 60, 70 and 80 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 2). In each experiment, spermatozoa were evaluated after thawing by computer automated sperm analyzer. The percentage of motile spermatozoa (faster than 30 microns/sec) was assessed. In addition, the velocity of the average path (VAP), the straight line velocity (VSL), the curvilinear velocity (VCL) and the amplitude of the lateral head displacement (ALH) were also measured. In Experiment 1, only glutamine (40 mM) significantly improved sperm motility (56.0% +/- 3.0 vs 49.7% +/- 1.6; P < 0.05) compared with the control extender, while velocities were unaffected at concentrations of 40 to 120 mM. However, at 160 mM, a significant decrease in motility and velocity was observed for all amino acids. In Experiment 2, motility in glutamine (range 41.1% +/- 3.8%; 42.4% +/- 3.6) and proline (43.0% +/- 3.7; 45.6% +/- 3.8) extenders compared with the control (34.7% +/- 1.6) was improved significantly (P < 0.05). Sperm velocity was improved at concentrations higher than 40 mM glutamine and 50 mM proline.  相似文献   

10.
Twelve fertile stallions were divided into two groups, either receiving gonadotropin-releasing hormone (GnRH) (n = 6) or Placebo (n = 6). Based on the history of frozen/thawed semen characteristics three stallions within each group were assigned as being "good freezers" [GnRH (+); Placebo (+)] and three stallions were assigned as being "poor freezers" [GnRH (-); Placebo (-)]. The study was performed as a "blinded" investigation and stallions were treated twice daily by an intramuscular injection of 1 ml GnRH (Buserelin), 50 microg) or Placebo. The experiment was divided into three time periods. Period A (pre-treatment) was performed between 16 November and 20 December; Period B (treatment) was performed during 6 weeks between 21 December and 31 January; and Period C (post-treatment) was performed between 1 February and 12 February. Semen was collected every Monday, Wednesday, Friday, and analysed for motion characteristics by the use of a computerized semen analyser, and sperm morphology immediately after collection. The spermatozoa were cryopreserved, stored in liquid nitrogen, and evaluated for motility (computer assisted semen analysis), membrane integrity (carboxyfluoresceine diacetate (CFDA) combined with propidium-iodide (PI), CFDA/PI), viability and sperm morphology (Eosine-Nigrosine, EN), and osmotic reactivity (hypo-osmotic swelling test, HOS) following thawing in a water bath. The viability of spermatozoa was expressed as the difference between pre-freeze and post-thaw values. A libido score of 1-4, the number of mounts on the phantom before ejaculation, and ejaculation latency were used to evaluate the stallions sexual behavior. Effect of treatment was analysed by comparing time intervals within groups as well as comparing groups within time intervals using SAS statistics software. GnRH treatment decreased the number of mounts before ejaculation (GnRH (total): 2.5 +/- 1.14 versus 1.8 +/- 1.06, P < 0.05), and shortened ejaculation latency. Cessation of treatment increased ejaculation latency in the GnRH group (4.7 +/- 4.98 min versus 7.2+/-7.88min, P<0.05). With the exception of libido score all parameters of sexual behavior were superior in the GnRH (+) group compared to the Placebo (-) group during the treatment period (P < 0.05). GnRH administration increased progressive motility (GnRH (+): 30.7 +/- 10.74% versus 38.4 +/- 15.1%, P < 0.05; GnRH (total): 24.9 +/- 11.80% versus 31.9 +/- 14.68%, P < 0.05), membrane intact spermatozoa CFDA/PI (GnRH (-): 16.8 +/- 7.17% versus 26.2 +/- 7.02%, P < 0.05; GnRH (total): 23.1 +/- 12.33% versus 29.5 +/- 10.77%, P < 0.05) and HOS positive spermatozoa (GnRH (+): 33.2 +/- 11.29% versus 42.2 +/- 10.36%, P < 0.05; GnRH (total): 32.9 +/- 10.23% versus 40.1 +/- 10.30%, P < 0.05) of frozen/thawed spermatozoa. Following cessation of treatment, the viability of frozen/thawed spermatozoa decreased. GnRH treated stallions had lower losses of live stained spermatozoa (EN) compared to the Placebo group (GnRH (total): 17.6 +/- 4.77 versus Placebo (total): 27.2 +/- 5.44, P < 0.05). This was particularly observed in the "poor freezer" group (GnRH (-): 16.6 +/- 4.35 versus Placebo (-): 31.3 +/- 5.87; P < 0.05). In conclusion, exogenous GnRH was shown to improve sexual behavior and increase the quality of frozen/thawed spermatozoa in fertile stallions during the non-breeding season. Nevertheless, it seems that, although significance was achieved relative to improvement to post-thaw sperm quality, that the "real" change in sperm quality seems negligible in fertile stallions. The mechanism of GnRH effect was not determined but this study may support the possibility of a direct gonadal or epididymal effect of exogenous GnRH in the stallion.  相似文献   

11.
To determine the effects of seminal plasma during and after cyopreservation on post-thaw sperm functions in semen from poor freezability boars, seminal plasma was removed immediately after collection, and sperm was subjected to cooling and freezing. Removal of seminal plasma did not significantly affect post-thaw sperm motility in good freezability boars; however, in boars with poor freezability, it increased post-thaw motility relative to control sperm cooled with seminal plasma (64.5+/-3.4% vs. 30.9+/-3.1%, P<0.01). Freezing sperm without seminal plasma increased both loss of the acrosome cap (37.5+/-1.6% vs. 18.4+/-2.8%, P<0.01) and expression of a 15 kDa tyrosine-phosphorylated protein (capacitation marker) in thawed sperm relative to controls; the addition of 10% (v/v) seminal plasma to the thawing solution significantly suppressed both changes and increased conception rate to AI (70% vs. 9% in the control group, P<0.05). In conclusion, our novel cryopreservation and thawing method increased the success of AI with frozen-thawed porcine semen, particularly from boars with poor post-thaw semen quality.  相似文献   

12.
The relationship between seminal plasma level (0, 10, or 20%) and extender type [Kenney type (EZ-Mixin-CST) or Kenney-modified Tyrodes-KMT] to the susceptibility of sperm DNA to denaturation and sperm motility measures were investigated in cooled (5 degrees C) stallion sperm. Three ejaculates from each of three fertile stallions were collected in an artificial vagina and processed as follows: diluted one part uncentrifuged semen with four parts of extender to a final concentration of 20% seminal plasma in either CST or KMT (20% CST; 20% KMT); diluted to a final concentration of 25 million sperm/mL in either CST or KMT (10% CST; 10% KMT); centrifuged to remove virtually all seminal plasma and resuspended in either CST or KMT (0% CST-Cent; 0% KMT-Cent); centrifuged semen to remove virtually all seminal plasma and resuspended with previously filtered seminal plasma from the same stallion in either CST or KMT to a final concentration of 20% seminal plasma (20% CST-Cent; 20% KMT-Cent). Sperm motion characteristics were determined by CASA and DNA integrity (%COMP, percent of cells outside the main population) evaluated by the Sperm Chromatin Structure Assay prior to cooling, and after 24 and 48 h cooled-storage at 5 degrees C. After 48 h of storage at 5 degrees C, extenders with 0% seminal plasma (0% CST-Cent, 0% KMT-Cent) maintained highest quality DNA (P < 0.05), but 0% KMT-Cent maintained higher velocity measures (P < 0.05) than 0% CST-Cent. Total sperm motility was highest (P < 0.05) in 0% CST-Cent, 0% KMT-Cent, 10% CST, 20% CST-Cent, and 20% CST compared to the other treatment groups. Progressive sperm motility was highest (P < 0.05) after 48 h of storage in the treatment with 10% seminal plasma in Kenney extender (10% CST), despite a reduction in DNA integrity. Regardless of extender type, addition of 20% seminal plasma following centrifugation resulted in almost a two-fold increase in %COMP(alpha t), even though one of the treatments (20% CST-Cent) maintained total and progressive motility similar to treatments with no seminal plasma, suggesting that sperm motility and DNA integrity may respond independently to environmental conditions. Overall, better quality sperm features (motility and DNA) were maintained in sperm from which seminal plasma was removed followed by resuspension in either Kenney extender or modified Kenney Tyrodes-type extender.  相似文献   

13.
Addition of seminal plasma (SP) prior to cryopreservation may influence stallion sperm cryosurvival. The objective of this study was to investigate the addition of pooled SP from “good” or “bad” freezer stallions to spermatozoa selected by single layer centrifugation (SLC) prior to cryopreservation on post-thaw sperm quality. Semen from 12 stallions was collected; 5 mL was frozen as control (C) and the remainder was processed by SLC to remove SP and was divided into three aliquots: i) SLC sample without SP (SLC); ii) SLC plus pooled SP from “good freezer” stallions (SLC-GF); iii) SLC plus pooled SP from “bad freezer” stallions (SLC-BF). After thawing, the following parameters were evaluated: chromatin integrity (DNA fragmentation index; %DFI), mitochondrial membrane potential (MMP), membrane integrity (MI), reactive oxygen species (ROS) and sperm kinematics. The %DFI was reduced (P < 0.0001) in SLC samples compared to controls. The SLC group showed a lower proportion of spermatozoa with low MMP and a higher proportion of spermatozoa with high MMP than other groups (P < 0.0001), and had lower hydrogen peroxide content than control. Sperm kinematics were not different. In conclusion, selection by SLC prior to cryopreservation improved post-thaw sperm quality; inclusion of SP from “good” and “bad” freezer stallions did not have an additional beneficial effect.  相似文献   

14.
This study was carried out to identify the suitable buffer for cryopreservation of buffalo semen. Semen was collected with artificial vagina (42 degrees C) from four buffalo bulls. Split pooled ejaculates (n=5), possessing more than 60% visual sperm motility, were extended at 37 degrees C either in tri-sodium citrate (CITRATE), Tris-citric acid (TCA), Tris-Tes (TEST) or Tris-Hepes (HEPEST). Semen was cooled to 4 degrees C in 2 h, equilibrated at 4 degrees C for 4 h, filled in 0.5 ml straws and frozen in a programmable cell freezer before plunging into liquid nitrogen. Thawing of frozen semen was performed after 24 h at 37 degrees C for 15 s. Sperm motion characteristics, plasma membrane integrity, and acrosome morphology of each semen sample were assessed by using computer-assisted semen analyzer (CASA), hypo-osmotic swelling (HOS) assay, and phase-contrast microscope, respectively. Analysis of variance revealed that percent post-thaw visual motility tended (P=0.07) to be higher in HEPEST (61.0+/-2.9) and lowest in CITRATE (48.0+/-2.5). Computerized motility did not vary due to buffering system. Percent post-thaw linear motility tended (P=0.09) to be higher in TCA (78.2+/-5.5) and lower in TEST (52.0+/-6.9). Circular motility (%) was significantly lower (P<0.05) in TCA (11.6+/-2.8) and higher in TEST (29.8+/-5.6). Curvilinear velocity (microm s(-1)) was lower (P<0.05) in TCA (69.4+/-2.0) than in CITRATE (79.0+/-5.8), TEST (87. 2+/-1.6) and HEPEST (82.6+/-3.0). Lateral head displacement (microm) was lowest (P<0.05) in TCA (1.7+/-0.2) and highest in TEST (3.7+/-0. 6). Plasma membrane integrity and normal acrosomes of buffalo spermatozoa did not differ due to buffering system and averaged 40. 0+/-2.7% and 61.4+/-4.6%, respectively. Based upon lower circular motility, curvilinear velocity, and lateral head displacement, it is concluded that post-thaw quality of buffalo semen can be improved using the Tris-TCA buffering system.  相似文献   

15.
The objective of this study was to determine if centrifugation and partial removal of seminal plasma would improve spermatozoal motility in semen from stallions whose whole ejaculates have poor tolerance to cooling and storage. Stallions were divided into two groups (n = 5/group) based on the ability of their extended semen to maintain spermatozoal motility after cooling and storage. Group 1 stallions ("good coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by < or = 30% of progressive motility prior to storage. Group 2 stallions ("poor coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by > or = 40% of progressive motility prior to storage. The sperm-rich portion of each ejaculate was divided into 4 aliquots. Two aliquots underwent standard processing for cooled transported semen and were examined after 24 and 48 h of cooling and storage in an Equitainer. The remaining two aliquots were diluted 1:1 with semen extender, then centrifuged at 400 x g for 12 min at room temperature. After centrifugation, approximately 90% of the seminal plasma was removed, and the sperm pellet was resuspended in extender to a final concentration of 25 to 50 x 10(6) sperm/mL. These aliquots were then packaged as for the non-centrifuged aliquots and examined after 24 and 48 h of storage. The spermatozoal motion characteristics in fresh semen and after 24 and 48 h of cooling and storage was determined via computer-assisted semen analysis. Centrifugation and partial removal of seminal plasma increased the percentage of progressively motile spermatozoa and limited the reduction in progressive spermatozoal motility of "poor cooling" stallions after 48 h of cooling and storage. Results of this study indicate that centrifugation and partial removal of seminal plasma is beneficial for stallions whose ejaculates have poor tolerance to cooling and storage with routine semen dilution and packaging techniques, especially if the semen is stored for > 24 h.  相似文献   

16.
Advancements in reproductive technologies have shown seminal plasma (SP) as a nutritive-protective medium for spermatozoa metabolism, function and transport. At the same time quality variables and thus freezability of spermatozoa are influenced by SP proteins originating from male reproductive tract. One such protein, viz. PDC-109 is reported to influence freezability of spermatozoa in cattle. Thus the present investigation was designed to evaluate effect of seminal PDC-109 protein concentration on post-thaw cholesterol content and semen quality variables (SQP) as an indicator of membrane integrity and freezability, respectively of buffalo spermatozoa. Ejaculates (n = 42) selected on the basis of mass activity and individual motility were divided into three parts, first part for SP proteins isolation, second for cholesterol estimation and third part was cryo-preserved to evaluate freezability based on post-thaw SQP, viz. individual progressive motility, viability and acrosome integrity of spermatozoa. A total of 28 (66.7%) and 14 (33.3%) ejaculates from four bulls were found as freezable or non-freezable, respectively. Though total seminal plasma protein (TSPP) concentration was found similar in freezable and non-freezable ejaculates, the heparin binding proteins (HBP) content in non-freezable semen was greater (P < 0.01) than freezable ejaculates. There was a similar trend for the PDC-109 protein content in respective ejaculates. Cholesterol content of spermatozoa and SQP were greater (P < 0.05 and 0.01, respectively) in freezable as compared to non-freezable ejaculates of each bull at post-thaw stage. This study showed that concentrations of HBP and PDC-109 in non-freezable semen might be responsible for greater cryo-damage reflecting in poor freezability of buffalo spermatozoa.  相似文献   

17.
Seminal plasma is generally removed from equine spermatozoa prior to cryopreservation. Two experiments were designed to determine if adding seminal plasma back to spermatozoa, prior to cryopreservation, would benefit the spermatozoa. Experiment 1 determined if different concentrations of seminal plasma affected post-thaw sperm motility, viability and acrosomal integrity of frozen/thawed stallion spermatozoa. Semen was washed through 15% Percoll to remove seminal plasma and spermatozoa resuspended to 350 x 10(6)sperm/mL in a clear Hepes buffered diluent containing either 0, 5, 10, 20, 40 or 80% seminal plasma for 15 min, prior to being diluted to a final concentration of 50 x 10(6)sperm/mL in a Lactose-EDTA freezing diluent and cryopreserved. Sperm motility was analyzed at 10 and 90 min after thawing, while sperm viability and acrosomal integrity were analyzed 20 min after thawing. Seminal plasma did not affect sperm motility, viability or acrosomal integrity (P>0.05). Experiment 2 tested the main affects of seminal plasma level (5 or 20%), incubation temperature (5 or 20 degrees C) and incubation time (2, 4 or 6 h) prior to cryopreservation. In this experiment, spermatozoa were incubated with 5 or 20% seminal plasma for up to 6h at either 5 or 20 degrees C prior to cryopreservation in a skim milk, egg yolk freezing extender. Samples cooled immediately to 5 degrees C, prior to freezing had higher percentages of progressively motile spermatozoa than treatments incubated at 20 degrees C (31 versus 25%, respectively; P<0.05), when analyzed 10 min after thawing. At 90 min post-thaw, total motility was higher for samples incubated at 5 degrees C (42%) compared to 20 degrees C (35%; P<0.05). In addition, samples containing 5% seminal plasma had higher percentages of total and progressively motile spermatozoa (45 and 15%) than samples exposed to 20% seminal plasma (33 and 9%; P<0.05). In conclusion, although the short-term exposure of sperm to seminal plasma had no significant effect on the motility of cryopreserved equine spermatozoa, prolonged exposure to seminal plasma, prior to cryopreservation, was deleterious.  相似文献   

18.
This study compared variation in the quality of cryopreserved boar spermatozoa and the control and accuracy of cooling rates between three semen freezers (CryoLogic Freeze Control CL3000, Planer Products Kryo Save Compact KS1.7/Kryo 10 Control module and a controlled rate 'Watson' freezing machine developed within our laboratory). Five ejaculates were collected from each of 15 boars (five boars from each of three breeds). Semen was diluted into a commercial freezing buffer (700 mOsm/kg, 3% v/v glycerol) and placed into 0.5 ml straws. Three straws per treatment, from each ejaculate were cooled to -5 degrees C at 6 degrees C/min, held at -5 degrees C for 30s while ice crystal formation was induced, then further cooled from -5 to 80 degrees C at either 40 degrees C/min (Kryo Save Compact KS1.7 and Watson) or 6 degrees C/min (Freeze Control CL3000). Precise measurements of temperature fluctuations during the programmed cooling curves were made by inserting thermocouples into the semen filled straws. Semen was assessed for %motile cells, motility characteristics using computer-assisted semen analysis (CASA), plasma membrane integrity (%SYBR-14 positive stained spermatozoa) and acrosome integrity (%FITC-PNA positive stained spermatozoa). Spermatozoa cryopreserved using the Freeze Control CL3000 system (maximum rate of 6 degrees C/min) exhibited reduced post-thaw viability (14.2+/-2.8% mean plasma membrane intact spermatozoa) when compared to both the KS1.7 and Watson freezers (optimal rate of 40 degrees C/min) (18.4+/-3.2 and 25.7+/-3.7% mean plasma membrane intact spermatozoa, respectively). Differences in motility characteristics were observed between spermatozoa cryopreserved at 40 degrees C/min with the Watson apparatus preserving a larger proportion of sperm with progressive motility. Cooling curves in the CL3000 and KS1.7 were interrupted by a pronounced increase in temperature at -5 degrees C that corresponded with the latent heat of fusion released with ice crystal formation. This temperature change was significantly reduced in the cooling curves produced by the Watson freezer. These findings suggest that preserving spermatozoa using the Watson freezer improved post-thaw semen quality, with regard to sperm motility characteristics. Furthermore, that post-thaw semen viability was enhanced by minimising temperature fluctuations resulting from the release of the latent heat of fusion at ice crystal formation.  相似文献   

19.
Fresh and post-thaw parameters (motility, morphology and viability) of stallion epididymal spermatozoa that have been and have not been exposed to seminal plasma were evaluated, and directly compared to fresh and post-thaw parameters of ejaculated spermatozoa. Six sperm categories of each stallion (n=4) were evaluated for motility, morphology and viability. These categories were fresh ejaculated spermatozoa (Fr-E), fresh epididymal spermatozoa that had been exposed to seminal plasma (Fr-SP+), fresh epididymal spermatozoa that had never been exposed to seminal plasma (Fr-SP-), frozen-thawed ejaculated spermatozoa (Cr-E), frozen-thawed epididymal spermatozoa that had been exposed to seminal plasma prior to freezing (Cr-SP+) and frozen-thawed epididymal spermatozoa that had never been exposed to seminal plasma (Cr-SP-). Results show that seminal plasma stimulates initial motility of fresh epididymal stallion spermatozoa while this difference in progressive motility is no longer present post-thaw; and that progressive motility of fresh or frozen-thawed ejaculated stallion spermatozoa is not always a good indicator for post-thaw progressive motility of epididymal spermatozoa. This study shows that seminal plasma has a positive influence on the incidence of overall sperm defects, midpiece reflexes and distal cytoplasmic droplets in frozen-thawed stallion epididymal spermatozoa while the occurance of midpiece reflexes is likely to be linked to distal cytoplasmic droplets. Furthermore, seminal plasma does not have an influence on viability of fresh and frozen-thawed morphologically normal epididymal spermatozoa. We recommend the retrograde flushing technique using seminal plasma as flushing medium to harvest and freeze stallion epididymal spermatozoa.  相似文献   

20.
Carver DA  Ball BA 《Theriogenology》2002,58(8):1587-1595
Previous studies have demonstrated a detrimental effect of seminal plasma on the maintenance of motility of cooled equine spermatozoa; however, the mechanism for the adverse effect of seminal plasma during cooled storage remains undetermined. In goats, a glycoprotein component of bulbourethral gland secretion contains lipase activity that is detrimental to sperm motility when stored in skim milk-based extenders. The objective of the current study was to determine the amount of lipase activity in stallion seminal plasma and to determine the effect of added lipase on spermatozoal motility during cooled semen storage. In the first experiment, seminal plasma (1.0 ml) was assayed for lipase activity based upon hydrolysis of triglycerides (olive oil substrate) into free fatty acids and subsequent titration of pH change (SigmaDiagnostic Lipase Kit). Lipase activity in stallion seminal plasma was 0.36 +/- 0.02 Sigma units/ml, (mean + S.E.M.; n = 16 ejaculates from six stallions). In the second experiment, equine semen (three ejaculates from each of four stallions) was divided into five treatment aliquots. In Treatment 1, semen was extended 1:3 with nonfat dried skim milk extender (NFDSM). In treatment groups 2 through 5, spermatozoa were washed by centrifugation (300 x g for 15 min) and resuspended in NFDSM to a final concentration of 25 x 10(6) spermatozoa/ml. Porcine pancreatic lipase (pPL) was added to Treatment 3 (10 pPL units/ml), Treatment 4 (100 pPL units/ml) and Treatment 5 (100 pPL units/ml, heat inactivated at 100 degrees C for 5 min) while Treatment 2 had no pancreatic lipase added and served as the control. Samples were cooled slowly to 5 degrees C, and stored at 5 degrees C until evaluation. Sperm motility was evaluated at time 0, 24, 48 and 72 h by computerized semen analysis, and data were analyzed via repeated measures ANOVA. The addition of 100 units/ml but not 10 units/ml of pPL decreased (P < 0.01) total and progressive motility of stored sperm. Heat-inactivated pPL (Treatment 5) did not significantly decrease motility of spermatozoa during storage. Because the lipase activity assayed (Sigma units) and the lipase activity added to cooled semen (pPL units) were not equivalent, pPL was assayed in the Sigma Diagnostic Lipase assay. The relationship between Sigma Units (Y) and pPL units (X) appeared to be a log-linear relationship with log(Y) = -0.912 + 0.007X; R2 = 0.90. Mean lipase activity assayed in stallion seminal plasma was equivalent to approximately 64 pPL units/ml. These data suggest that endogenous lipase activity in stallion seminal plasma may be a factor in the adverse effects of seminal plasma on cooled spermatozoa in some stallions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号