共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins have evolved to fold and function within a cellular environment that is characterized by high macromolecular content. The earliest step of protein folding represents intrachain contact formation of amino acid residues within an unfolded polypeptide chain. It has been proposed that macromolecular crowding can have significant effects on rates and equilibria of biomolecular processes. However, the kinetic consequences on intrachain diffusion of polypeptides have not been tested experimentally, yet. Here, we demonstrate that selective fluorescence quenching of the oxazine fluorophore MR121 by the amino acid tryptophan (Trp) in combination with fast fluorescence correlation spectroscopy (FCS) can be used to monitor end-to-end contact formation rates of unfolded polypeptide chains. MR121 and Trp were incorporated at the terminal ends of polypeptides consisting of repetitive units of glycine (G) and serine (S) residues. End-to-end contact formation and dissociation result in "off" and "on" switching of MR121 fluorescence and underlying kinetics can be revealed in FCS experiments with nanosecond time resolution. We revisit previous experimental studies concerning the dependence of end-to-end contact formation rates on polypeptide chain length, showing that kinetics can be described by Gaussian chain theory. We further investigate effects of solvent viscosity and temperature on contact formation rates demonstrating that intrachain diffusion represents a purely diffusive, entropy-controlled process. Finally, we study the influence of macromolecular crowding on polypeptide chain dynamics. The data presented demonstrate that intrachain diffusion is fast in spite of hindered diffusion caused by repulsive interactions with macromolecules. Findings can be explained by effects of excluded volume reducing chain entropy and therefore accelerating the loop search process. Our results suggest that within a cellular environment the early formation of structural elements in unfolded proteins can still proceed quite efficiently in spite of hindered diffusion caused by high macromolecular content. 相似文献
2.
Low-temperature absorption and fluorescence spectra of fully active cores and membrane-bound PS II preparations are compared. Detailed temperature dependence of fluorescence spectra between 5 and 70 K are presented as well as 1.7-K fluorescence line-narrowed (FLN) spectra of cores, confirming that PS II emission is composite. Spectra are compared to those reported for LHCII, CP43, CP47 and D1/D2/cytit b559 subunits of PS II. A combination of subunit spectra cannot account for emission of active PS II. The complex temperature dependence of PS II fluorescence is interpretable by noting that excitation transfer from CP43 and CP47 to the reaction centre is slow, and strongly dependent on the precise energy at which a ‘slow-transfer’ pigment in CP43 or CP47 is located within its inhomogeneous distribution. PS II fluorescence arises from CP43 and CP47 ‘slow-transfer’ states, convolved by this dependence. At higher temperatures, thermally activated excitation transfer to the PS II charge-separating system bypasses such bottlenecks. As the charge-separating state of active PS II absorbs at >700 nm, PS II emission in the 680–700 nm region is unlikely to arise from reaction centre pigments. PS II emission at physiological temperatures is discussed in terms of these results. 相似文献
3.
单分子荧光共振能量转移技术(single molecule fluorescence resonance energy transfer,smFRET)通过检测单个分子内的荧光供体及受体间荧光能量转移的效率,来研究分子构象的变化。在单分子探测技术发展之前,大多数的分子实验是探测分子的综合平均效应(ensemble averages),这一平均效应掩盖了许多特殊的信息。单分子探测可以对体系中的单个分子进行研究,得到某一分子特性的分布状况,也可研究生物分子的动力学反应。介绍了近来单分子荧光共振能量转移技术的进展。 相似文献
4.
Holger Dau 《Photosynthesis research》1996,48(1-2):139-145
Stepanov (1957a, Soviet Physics-Doklady 2: 81–84) obtained an equation which relates the absorption spectrum and the fluorescence emission spectrum of a single dye molecule. Here, a similar equation is derived for a cluster of interacting pigments, e.g. the antenna pigments of a photosystem. This relation can be used to assess the possibility of occurrence of rapid exciton equilibration (Dau and Sauer, 1996, Biochim. Biophys. Acta, 1273: 175–190). The excited state potential of a pigment cluster is discussed and compared to the excited state potential of a single pigment.Abbreviations Chl chlorophyll - EE exciton equilibrium - PS photosystem - RC reaction center - REE rapid exciton equilibration 相似文献
5.
The T347S polymorphism in the human apolipoprotein (apo) A-IV gene is present at high frequencies among all the world''s populations. Carriers of a 347S allele exhibit faster clearance of triglyceride-rich lipoproteins, greater adiposity, and increased risk for developing atherosclerosis, which suggests that this conservative amino acid substitution alters the structure of apo A-IV. Herein we have used spectroscopic and surface chemistry techniques to examine the structure, stability, and interfacial properties of the apo A-IV 347S isoprotein. Circular dichroism spectroscopy revealed that the 347S isoprotein has similar α-helical structure but lower thermodynamic stability than the 347T isoprotein. Fluorescence spectroscopy found that the 347S isoprotein exhibits an enhanced tyrosine emission and reduced tyrosine→tryptophan energy transfer, and second derivative UV absorption spectra noted increased tyrosine exposure, suggesting that the 347S isoprotein adopts a looser tertiary conformation. Surface chemistry studies found that although the 347S isoprotein bound rapidly to the lipid interface, it has a lower interfacial exclusion pressure and lower elastic modulus than the 347T isoprotein. Together, these observations establish that the T347S substitution alters the conformation of apo A-IV and lowers its interfacial activity—changes that could account for the effect of this polymorphism on postprandial lipid metabolism. 相似文献
6.
Mimuro M 《Photosynthesis research》2002,73(1-3):133-138
Development of the time-resolved fluorescence spectroscopy in the pico-second time range and its application to the energy
transfer processes in many photosynthetic organisms is reviewed here. This method enabled visualization of energy transfer
processes by three-dimensional expression of fluorescence spectra and discrimination of kinetic components and spectral components.
The second generation of the ultrafast fluorescence spectroscopy is the femto-second (fs) fluorescence up-conversion, and
this has enabled analyses of the transfer processes from carotenoids to chlorophylls with a resolution of less than 100 fs.
For future progress, a further development of the spectroscopy is indispensable as well as structural data at atomic resolution.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
生物学中荧光共振能量转移的研究应用进展 总被引:5,自引:0,他引:5
荧光共振能量转移(FRET)可用于对生物大分子之间的距离进行定性、定量检测,所采用的材料、方法在近年都有了很大的发展,在核酸、蛋白质、细胞器结构功能检测、免疫测定、配体-受体相互作用测定等方面都有巧妙而有效的应用,应用前景十分广阔。 相似文献
8.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl
chlorophyll
- BChl
bacteriochlorophyll
- PS
Photosystem
-
S. 6803
Synechocystis sp. PCC 6803
- PGP
potassium glycerol phosphate 相似文献
9.
A single energy transfer distance, between the sole intrinsic tryptophanyl donor [14 (A12)] and a nonfluorescent sulfhydryl acceptor probe (4-phenylazophenylmaleimide, PAPM) attached to the only cysteine [104 (G11)], has been employed to examine the effect of subunit assembly on the structure of the heme-free human-hemoglobin. Efficiencies of energy transfer were measured in 0.05 M potassium phosphate buffer,pH 7.0, at 5°C, and the structural flexibility of-apohemoglobin, in the absence and presence of human-heme-containing chains, was examined by a steady-state solute quenching technique. The quenched efficiencies (E
O) and Förster distances (R
0
O
) were analyzed by least-squares to determine the goodness of fit (
R
2
) for the assumed distribution parameters: average distance ¯r and half-widthhw. Data for-apohemoglobin in the absence and presence of
h
chains yielded values for ¯r of 18 and 22 Å andhw of 20 and 8.5 Å, respectively. Although the increase in ¯r for-apohemoglobin in the presence of
h
chains was presumably a consequence of additional quenching from the heme moiety, the change in the half-width strongly indicated a decrease in the flexibility of the-apohemoglobin chain within the assembled protein. A transition in structural flexibility similar to that demonstrated here may be an important aspect of human hemoglobin assembly. 相似文献
10.
Fluorescence resonance energy transfer (FRET) experiments were carried out in the absence of nucleotide (rigor) or in the presence of MgADP between fluorescent donor probes (IAEDANS (5((((2-iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid) at Cys-374 or DANSYL (5-dimethylamino naphthalene-1-(N-(5-aminopentyl))sulfonamide) at Gln-41 of actin and acceptor molecules (FHS (6-[fluorescein-5(and 6)-carboxamido] hexanoic acid succinimidyl ester) at Lys-553 of skeletal muscle myosin subfragment 1. The critical F?rster distance (R(0)) was determined to be 44 and 38 A for the IAEDANS-FHS and DANSYL-FHS donor-acceptor pairs, respectively. The efficiency of energy transfer between the acceptor molecules at Lys-553 of myosin and donor probes at Cys-374 or Gln-41 of actin was calculated to be 0.78 +/- 0.01 or 0.94 +/- 0.01, respectively, corresponding to distances of 35.6 +/- 0.4 A and 24.0 +/- 1.6 A, respectively. MgADP had no significant effect on the distances observed in rigor. Thus, rearrangements in the acto-myosin interface are likely to occur elsewhere than in the lower 50-kDa subdomain of myosin as its affinity for actin is weakened by MgADP binding. 相似文献
11.
We have prepared and characterized a new fluorescent derivative of murine epidermal growth factor (EGF), Alexa Fluor 594-labeled EGF (A-EGF), for fluorescence studies of EGF-EGF receptor interactions. We describe the synthesis of this derivative and its physical and biological characterization. The significant overlap between the excitation and the emission spectra of A-EGF makes this probe well suited to fluorescence resonance energy homo-transfer. Using time-resolved fluorescence to examine the oligomeric state of the EGF receptor, we have observed resonance energy homo-transfer of A-EGF bound to EGF receptors in cells, but not of A-EGF bound to EGF receptors in membrane vesicles. Our results, interpreted in the context of recent crystallographic studies of the ligand-binding domains of EGF receptors, suggest that observed fluorescence resonance energy transfer does not result from transfer within receptor dimers, but rather results from transfer within higher-order oligomers. Furthermore, our results support a structural model for oligomerization of EGF receptors in which dimers are positioned head-to-head with respect to the ligand-binding site, consistent with the head-to-head interactions observed between adjacent receptor dimers by X-ray crystallography. 相似文献
12.
During retrovirus assembly, the polyprotein Gag directs protein multimerization, membrane binding, and RNA packaging. It is unknown whether assembly initiates through Gag-Gag interactions in the cytosol or at the plasma membrane. We used two fluorescence techniques-two-photon fluorescence resonance energy transfer and fluorescence correlation spectroscopy-to examine Rous sarcoma virus Gag-Gag and -membrane interactions in living cells. Both techniques provide strong evidence for interactions between Gag proteins in the cytoplasm. Fluorescence correlation spectroscopy measurements of mobility suggest that Gag is present in large cytosolic complexes, but these complexes are not entirely composed of Gag. Deletion of the nucleocapsid domain abolishes Gag interactions and membrane targeting. Deletion of the membrane-binding domain leads to enhanced cytosolic interactions. These results indicate that Gag-Gag interactions occur in the cytosol, are mediated by nucleocapsid domain, and are necessary for membrane targeting and budding. These methods also have general applicability to in vivo studies of protein-protein and -membrane interactions involved in the formation of complex macromolecular structures. 相似文献
13.
A simple kinetic model structure for chlorophyll fluorescence (ChlF) from Photosystem II (PSII) offers practical usefulness in quantitative analysis and extraction of information from measured ChlF. In this work, the major PSII phototransduction kinetics was represented with only five state variables. Parameters were estimated through a least-squares algorithm. The developed model structure could produce the well-known OJIP pattern and fit measured ChlF. Influences of PQ pool size, active QB sites, and QA reduction rate on ChlF emission were simulated and discussed in light of the existing literature. 相似文献
14.
Icariin is a flavonol glycoside with a wide range of pharmacological and biological activities. The pharmacological and biological functions of flavonoid compounds mainly originate from their binding to proteins. The mode of interaction of icariin with human serum albumin (HSA) has been characterized by fluorescence spectroscopy and far‐ and near‐UV circular dichroism (CD) spectroscopy under different pH conditions. Fluorescence quenching studies showed that the binding affinity of icariin with HSA in the buffer solution at different pH values is: Ka (pH 4.5) > Ka (pH 3.5) > Ka (pH 9.0) > Ka (pH 7.0). Red‐edge excitation shift (REES) studies revealed that pH had an obvious effect on the mobility of the tryptophan microenvironment and the addition of icariin made the REES effect more distinct. The static quenching mechanism and number of binding sites (n ≈ 1) were obtained from fluorescence data at three temperatures (298, 304 and 310 K). Both ?H0 < 0 and ??0 < 0 suggested that hydrogen bonding and van der Waal's interaction were major driving forces in the binding mechanism, and this was also confirmed by the molecular simulation results. The distance r between the donor (HSA) and the acceptor (icariin) was calculated based on Förster non‐radiation energy transfer theory. We found that pH had little impact on the energy transfer between HSA and icariin. Far‐ and near‐UV CD spectroscopy studies further indicated the influence of pH on the complexation process and the alteration in the protein conformation upon binding. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
André Chollet Gerardo Turcatti 《International journal of peptide research and therapeutics》1998,5(2-3):79-82
Summary Novel fluorescence approaches to investigate ligand recognition and structure of G protein-coupled receptors in native membranes have been developed. These methods combine the biosynthetic incorporation of unnatural fluorescent amino acids at known sites in receptors with the technique of fluorescence energy transfer for distance measurement. This permits one to fix the ligand in space and to define the structure of the receptor in a model of ligand-receptor interactions. Subdomains of ligand binding sites on NK1 and NK2 receptors were also characterized using environment-sensitive fluorophores and the techniques of collisional quenching and anisotropy. Antagonists and agonists have different binding sites on NK1 and NK2. 相似文献
16.
Wang X de Vocht ML de Jonge J Poolman B Robillard GT 《Protein science : a publication of the Protein Society》2002,11(5):1172-1181
The hydrophobin SC3 belongs to a class of small proteins functioning in the growth and development of fungi. Its unique amphipathic property and remarkable surface activity make it interesting not only for biological studies but also for medical and industrial applications. Biophysical studies have revealed that SC3 possesses at least three distinct conformations, named \"soluble-state SC3\" for the protein in solution, and \"alpha-helical-state SC3\" and \"beta-sheet-state SC3\" for the different states of the protein associated at a hydrophobic-water interface. The present fluorescence study shows that the microenvironment of the dansyl-labeled N terminus of soluble-state SC3 is relatively hydrophobic, whereas it is hydrophilic for alpha-helical-state and beta-sheet-state SC3. Fluorescence collisional quenching indicates that the N terminus of soluble-state SC3 is more solvent-accessible than those of alpha-helical-state and beta-sheet-state SC3, with Stern-Volmer constants for acrylamide of 4.63, 0.02, and 0.2 M(-1) for the different states, respectively. Fluorescence resonance energy transfer measurements show that soluble-state SC3 tends to associate in solution but dissociates in TFA. Fluorescence energy transfer was eliminated by conversion of soluble-state SC3 to alpha-helical-state SC3 on a hydrophobic surface, indicating a spatial separation of the molecules in this state. By inducing the beta-sheet state, structural changes were observed, both by CD and by fluorescence, that could be fit to two exponentials with lifetimes of about 10 min and 4 h. Molecules in the beta-sheet state also underwent a slow change in spatial proximity on the hydrophobic surface, as revealed by the reappearance of fluorescence resonance energy transfer in time. 相似文献
17.
Investigation of the solid state properties of amoxicillin trihydrate and the effect of powder pH 总被引:1,自引:0,他引:1
Ghassempour A Rafati H Adlnasab L Bashour Y Ebrahimzadeh H Erfan M 《AAPS PharmSciTech》2007,8(4):91-96
The purpose of this research was to investigate some physicochemical and solid-state properties of amoxicillin trihydrate (AMT) with different powder pH within the pharmacopoeia-specified range. AMT batches prepared using Dane salt method with the pH values from 4.39 to 4.97 were subjected to further characterization studies. Optical and scanning electron microscopy showed that different batches of AMT powders were similar in crystal habit, but the length of the crystals increased as the pH increased. Further solid-state investigations using powder x-ray diffraction (PXRD) demonstrated the same PXRD pattern, but the intensity of the peaks raised by the powder pH, indicated increased crystallinity. Differential scanning calorimetry (DSC) studies further confirmed that as the powder pH increased, the crystallinity and, hence, thermal stability of AMT powders increased. Searching for the possible cause of the variations in the solid state properties, HPLC analysis showed that despite possessing the requirements of the United States Pharmacopoeia (USP) for purity/impurity profile, there was a direct relationship between the increase of the powder pH and the purity of AMT, and also decrease in the impurity I (alpha-Hydroxyphenylglycine) concentration in AMT powder. Recrystallization studies confirmed that the powder pH could be controlled by adjusting the pH of the crystallization. 相似文献
18.
19.
Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome. 相似文献
20.
In recent years, single-molecule methods have enabled many innovative studies in the life sciences, which generated unprecedented insights into the workings of many macromolecular machineries. Single-molecule studies of bioinorganic systems have been limited, however, even though bioinorganic chemistry represents one of the frontiers in the life sciences. With the hope to stimulate more interest in applying existing and developing new single-molecule methods to address compelling bioinorganic problems, this review discusses a few single-molecule fluorescence approaches that have been or can be employed to study the functions and dynamics of metalloproteins. We focus on their principles, features and generality, possible further bioinorganic applications, and experimental challenges. The fluorescence quenching via energy transfer approach has been used to study the O2-binding of hemocyanin, the redox states of azurin, and the folding dynamics of cytochrome c at the single-molecule level. Possible future applications of this approach to single-molecule studies of metalloenzyme catalysis and metalloprotein folding are discussed. The fluorescence quenching via electron transfer approach can probe the subtle conformational dynamics of proteins, and its possible application to probe metalloprotein structural dynamics is discussed. More examples are presented in using single-molecule fluorescence resonance energy transfer to probe metallochaperone protein interactions and metalloregulator-DNA interactions on a single-molecule basis. 相似文献