首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct-injection LC-LC hybrid tandem MS methods have been developed for undertaking broad-based screening for acidic drugs in protein-precipitated plasma and neutral doping agents in equine urine. In both analyses, analytes present in the matrix were trapped using a HLB extraction column before being refocused and separated on a Chromolith RP-18e monolithic analytical column using a controlled differential gradient generated by proportional dilution of the first column's eluent with water. Each method has been optimised by the adoption of a mobile phase and gradient that was tailored to enhance ionisation in the MS source while maintaining good chromatographic behaviour for the majority of the target drugs. The analytical column eluent was fed into the heated nebulizer (HN) part of the Duospray interface attached to a 4000 QTRAP mass spectrometer. Information dependent acquisition (IDA) with dynamic background subtraction (DBS) was configured to trigger a sensitive enhanced product ion (EPI) scan when a multiple reaction monitoring (MRM) survey scan signal exceeded the defined criteria. Ninety-one percent of acidic drugs in protein-precipitated plasma and 80% of the neutral compounds in equine urine were detected when spiked at 10 ng/ml.  相似文献   

2.
A rapid, sensitive, and specific ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) assay method for simultaneous determination of 13 benzodiazepine compounds in human urine was developed and validated. Aliquots of 0.5 mL of urine specimens were used for the analysis and the benzodiazepines were extracted by single step methanol (containing 0.2% formic acid) precipitation and then separated on a BEH C18 (50 mm × 2.1 mm, 1.7 μm) analytical column with the temperature maintained at 45°C. The mobile phases consisted of methanol and water (both containing 0.2% formic acid) and the flow rate was 0.4 mL/min. The TQ detector, equipped with an electrospray ionization ion source, was set up with a positive mode. The acquisitions were performed in multiple-reaction monitoring (MRM) and the limit of quantification was 20 ng/mL for all of the 13 compounds. The low limits of detections (LODs) of the benzodiazepines in this method were between 0.5 and 2 ng/mL. The chromatographic separation time was 4 min and calibration curves in human urine were generated over the range of 20-2000 ng/mL. The method validation parameters such as accuracy, precision, carryover, recovery, stability, and specificity for all of the 13 compounds were within the acceptable range. This method is suitable for the high throughput screening of benzodiazepines in clinical laboratories.  相似文献   

3.
A gas chromatographic–mass spectrometric method was developed for the simultaneous analysis of 15 low-dosed benzodiazepines, both parent compounds and their corresponding metabolites, in human urine. The target compounds are alprazolam, -hydroxyalprazolam, 4-hydroxyalprazolam, flunitrazepam, 7-aminoflunitrazepam, desmethylflunitrazepam, flurazepam, hydroxyethylflurazepam, nitrogen-desalkylflurazepam, ketazolam, oxazepam, lormetazepam, lorazepam, triazolam and -hydroxytriazolam. Nitrogen-methylclonazepam is used as the internal standard. The urine sample preparation involves enzymatic hydrolysis of the conjugated metabolites with Helix pomatia β-glucuronidase for 1 h at 56°C followed by solid-phase extraction on a phenyl-type column. The extracted benzodiazepines are subsequently analyzed on a polydimethylsiloxane column using on-column injection to enhance sensitivity. The extraction efficiency exceeded 80% for all compounds except for oxazepam, lorazepam and 4-hydroxyalprazolam which had recoveries of about 60%. The LODs ranged from 13 to 30 ng/ml in the scan mode and from 1.0 to 1.7 ng/ml in the selected ion monitoring (SIM) mode. Linear calibration curves were obtained in the concentration ranges from 50 to 1000 ng/ml in the scan mode and from 5 to 100 ng/ml in the SIM mode. The within-day and day-to-day relative standard deviations at three different concentrations never exceeded 15%.  相似文献   

4.
A sensitive, stereoselective assay using solid phase extraction and LC-MS-MS was developed and validated for the analysis of (R)- and (S)-bupropion and its major metabolite (R,R)- and (S,S)-hydroxybupropion in human plasma and urine. Plasma or glucuronidase-hydrolyzed urine was acidified, then extracted using a Waters Oasis MCX solid phase 96-well plate. HPLC separation used an alpha(1)-acid glycoprotein column, a gradient mobile phase of methanol and aqueous ammonium formate, and analytes were detected by electrospray ionization and multiple reaction monitoring with an API 4000 Qtrap. The assay was linear in plasma from 0.5 to 200 ng/ml and 2.5 to 1000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. The assay was linear in urine from 5 to 2000 ng/ml and 25 to 10,000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. Intra- and inter-day accuracy was >98% and intra- and inter-day coefficients of variations were less than 10% for all analytes and concentrations. The assay was applied to a subject dosed with racemic bupropion. The predominant enantiomers in both urine and plasma were (R)-bupropion and (R,R)-hydroxybupropion. This is the first LC-MS/MS assay to analyze the enantiomers of both bupropion and hydroxybupropion in plasma and urine.  相似文献   

5.
We devised a sensitive and simple method to determine alpha-methyltryptamine (AMT) and 5-methoxy-N,N-diisopropyltryptamine (5MeO-DIPT) in whole blood and urine, using gas chromatography-mass spectrometry (GC-MS). AMT and 5MeO-DIPT were extracted using an Extrelut column with an internal standard, bupivacaine, followed by derivatization with acetic anhydride. The derivatized extract was used for GC-MS analysis of EI-SIM mode. The calibration curves of AMT and 5MeO-DIPT were linear in the concentration range from 10 to 750 ng/ml in both blood and urine samples. The method detection limit (MDL) of AMT and 5MeO-DIPT were 1 ng/ml each in whole blood and 5 ng/ml each in urine. This method should be most useful to accurately determine the presence of these drugs in blood and urine in clinical and forensic cases.  相似文献   

6.
Metamphetamine (MA) is one of the most frequently encountered abused drugs in Japan and the Triage immunoassay kit is often used to screen for this drug. However, immunoassay screening also gives positive results with other structurally related compounds, such as 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), p-methoxyamphetamine (PMA), an ephedrine metabolite and beta-phenethylamine (PEA). Therefore, it is important to develop a simple and reliable method which can determine these drugs simultaneously. This paper describes a simple method for simultaneous identification and quantification of 13 amphetamine related drugs in human whole blood. The method consists of a solid phase extraction using a new polar-enhanced Focus column followed by acetylation and gas chromatography-mass spectrometry in the scan mode. Tetradeuterated MA and trideuterated methylephedrine (ME) were used as internal standards. As the Focus column required only simple extraction steps and provided a clean extract, identification of each drug was feasible even at low concentrations. The calibration curves were linear over the concentration range from 50 to 5000 ng/ml for all drugs with correlation coefficients that exceeded 0.99. The lower limits of detection of the drugs were 5-50 ng/ml. The absolute recoveries for the drugs were 65-95% and 64-89% at concentrations of 100 and 1000 ng/ml, respectively. Accuracy and precision data were satisfactory when using 2 internal standards. The applicability of the assay was proven by the analysis of blood samples in forensic cases. This method should be most useful for confirmation of positive immunoassay results for amphetamines and related drugs.  相似文献   

7.
A sensitive and specific HPLC-MS-MS method was developed for the determination of endogenous uracil (Ura) and its metabolite dihydrouracil (UH2) in human plasma and urine samples. Plasma samples were extracted with ethyl acetate-isopropanol (85:15, v/v) following added ammonium sulfate, and then separated on a Discovery Amide C16 column with 3% methanol solution as the mobile phase; urine samples were just centrifuged at 2500 g for detection. Quantitation was carried out by LC-MS-MS in the multiple reaction monitoring (MRM) mode. The limits of quantitation of the method for Ura and UH2 were 0.5 and 5 ng ml(-1) (for plasma), and 50 and 100 ng ml(-1) (for urine), respectively. This method can be useful to evaluate the activity of dihydropyrimidine dehydrogenase (DPD), a rate-limiting enzyme of the chemotherapy drug fluoropyrimidine, which will be helpful in investigating subject variation of DPD and adjusting clinical dosage in pyrimidine chemotherapy.  相似文献   

8.
A practical and sensitive high-performance liquid chromatographic method using normal solid-phase extraction has been developed for the determination of methotrexate (MTX) and its main metabolite 7-hydroxymethotrexate (7-OH-MTX) in human urine. A urine specimen followed by the addition of pH 5.0 acetate buffer was purified by solid-phase extraction on a Sep-Pak silica cartridge. The analyte was chromatographed on a reversed-phase Inertsil ODS-2 column using phosphate buffer-acetonitrile at pH 5.3 as the mobile phase, and the effluent from the column was monitored at 303 nm. A good linear relationship between peak height and concentration was found for both of MTX and 7-OH-MTX in the range 5 to 1000 ng/ml of human urine. The inter-day coefficients of variation for the assay (n=5) were 8.8% (5 ng/ml), 3.4% (50 ng/ml) and 2.0% (500 ng/ml) for MTX, and 7.2, 2.7 and 2.3% for 7-OH-MTX in urine, respectively. The present method should prove useful for the evaluation of urinary drug excretion in patients undergoing MTX low-dose therapy.  相似文献   

9.
Misuse of numerous beta-agonist drugs for their growth promoting effects in livestock production requires significant regulatory enforcement activities worldwide. The proof of illegal drug use needed for regulatory action usually requires the high degree of specificity derived from mass spectrometric analysis of suspect tissues and body fluids. In this paper, we describe a multiresidue screening method for confirmation of nine beta-agonist compounds in bovine liver and retina. A wide range of analyte structures was selected in order to demonstrate applicability to other chemically related beta-agonists for which standards are not currently available. The class-specific method, which is based on mixed mode cation exchange/reverse phase solid phase extraction, reverse phase gradient LC separation using a cyanopropyl-silica phase, and tandem mass spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode, yields high analyte recoveries at the target level of 1 ppb (ng/g). In addition, acquisition of multiple MRM transitions for each analyte permits simultaneous confirmation of beta-agonists at the level of 1 ppb in liver and retina by using intensity ratios between fragment ions and protonated molecules. Estimated values for the limit of quantification (LOQ) for individual beta-agonists were 0.08-0.3 ppb in liver and 0.02-0.5 in retina; the estimated limits of confirmation, using accepted criteria from international regulatory agencies, were 0.25-0.8 ppb in liver and 0.1-1 ppb in retina. This method should be useful in supporting regulatory enforcement programs that monitor beta-agonist misuse.  相似文献   

10.
A sensitive, selective and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric assay was developed and validated for the simultaneous quantification of 16-dehydropregnenolone (DHP) and its five metabolites 4,16-pregnadien-3, 20-dione (M(1)), 5-pregnene-3beta-ol-20-one (M(2)), 5-pregnene-3beta, 20-diol (M(3)), 5-pregnene-3beta-ol-16, 17-epoxi-20-one (M(4)) and 5,16-pregnadien-3beta, 11-diol-20-one (M(5)) in rabbit plasma using dexamethasone as internal standard (IS). The analytes were chromatographed on Spheri-5 RP-18 column (5 microm, 100 mm x 4.6 mm i.d.) coupled with guard column using acetonitrile:ammonium acetate buffer (90:10, v/v) as mobile phase at a flow rate of 0.65 ml/min. The quantitation of the analytes was carried out using API 4000 LC-MS-MS system in the multiple reaction monitoring (MRM) mode. The method was validated in terms of linearity, specificity, sensitivity, recovery, accuracy, precision (intra- and inter-assay variation), freeze-thaw, long-term, auto injector and dry residue stability. Linearity in plasma was observed over a concentration range of 1.56-400 ng/ml with a limit of detection (LOD) of 0.78 ng/ml for all analytes except M(3) and M(5) where linearity was over the 3.13-400 ng/ml with LOD of 1.56 ng/ml. The absolute recoveries from plasma were consistent and reproducible over the linearity range for all analytes. The intra- and inter-day accuracy and precision method were within the acceptable limits and the analytes were stable after three freeze-thaw cycles and their dry residues were stable at -60 degrees C for 15 days. The method was successfully applied to determine concentrations of DHP and its putative metabolites in plasma during a pilot pharmacokinetic study in rabbits.  相似文献   

11.
A sensitive, simple and highly selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and evaluated to determine simultaneously the concentrations of pseudoephedrine and cetirizine in human plasma. The chief benefit of the present method is the minimal sample preparation, as the procedure is only one-step protein precipitation. Two drugs were separated on a C(8) column and analyzed by LC/MS/MS using positive electrospray ionisation (ESI). The method had a chromatographic run time of 12.0 min and a linear calibration curve over the concentration range of 1.0-800 ng/ml for pseudoephedrine and 1.0-400 ng/ml for cetirizine, respectively. The lower limit of quantification of the two drugs was 1.0 ng/ml, respectively. The intra- and inter-batch precisions were less than 9.7%. The method described herein has been first used to reveal the pharmacokinetic characters in healthy Chinese volunteers treated with oral administration of different dosages of cetirizine dihydrochloride and controlled-released pseudoephedrine hydrochloride compound tablet, and approached the influence of a standard meal on the extent and rate of absorption of the combination tablet.  相似文献   

12.
To prove the intake of recently controlled designer drugs, N-benzylpiperazine (BZP) and 1-(3-trifluoromethylphenyl)piperazine (TFMPP), a simple, sensitive and reliable method which allows us to simultaneously detect BZP, TFMPP and their major metabolite in human urine has been established by coupling gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). GC-MS accompanied by trifluoroacetyl (TFA) derivatization and LC-MS analyses were performed after the enzymatic hydrolysis and the solid phase extraction with OASIS HLB, and BZP, TFMPP and their major metabolites, 4'-hydroxy-BZP (p-OH-BZP), 3'-hydroxy-BZP (m-OH-BZP) and 4'-hydroxy-TFMPP (p-OH-TFMPP), have found to be satisfactorily separated on a semi-micro SCX column with acetonitrile-40 mM ammonium acetate buffer (pH 4) (75:25, v/v) as the eluent. The detection limits produced by GC-MS were estimated to be from 50 ng/ml to 1 microg/ml in the scan mode, and from 200 to 500 ng/ml in the selected ion monitoring (SIM) mode. Upon applying the LC-ESI-MS technique, the linear calibration curves were obtained by using the SIM mode for all analytes in the concentration range from 10 ng/ml to 10 microg/ml. The detection limits ranged from 5 to 40 ng/ml in the scan mode, and from 0.2 to 1 ng/ml in the SIM mode. These results indicate the high reliability and sensitivity of the present procedure, and this procedure will be applicable for proof of intake of BZP and TFMPP in forensic toxicology.  相似文献   

13.
As laboratories are called upon to develop novel, fast, and sensitive methods, here we present a completely automated method for the analysis of cocaine and its metabolites (benzoylecgonine, ecgonine methyl ester, ecgonine and cocaethylene) from whole blood. This method utilizes an online solid-phase extraction (SPE) with high performance liquid chromatographic separation and tandem mass spectrometric detection. Pretreatment of samples involve only protein precipitation and ultracentrifugation. An efficient online solid-phase extraction (SPE) procedure was developed using Hysphere MM anion sorbent. A gradient chromatography method with a Gemini C6-Phenyl (50mmx3.00mm i.d., 5microm) column was used for the complete separation of all components. Analysis was by positive ion mode electrospray ionization tandem mass spectrometry, using multiple reaction monitoring (MRM) to enhance the selectivity and sensitivity of the method. For the analysis, two MRM transitions are monitored for each analyte and one transition is monitored for each internal standard. With a 30-microL sample injection, linearity was analyte dependent but generally fell between 8 and 500ng/mL. The limits of detection (LODs) for the method ranged from 3 to 16ng/mL and the limits of quantitation (LOQs) ranged from 8 to 47ng/mL. The bias and precision were determined using a simple analysis of variance (ANOVA: single factor). The results demonstrate bias as <7%, and %precision as <9% for all components at each QC level.  相似文献   

14.
Karenitecin is a novel, highly lipophilic camptothecin derivative with potent anticancer potential. We have developed a sensitive high-performance liquid chromatographic method for the determination of karenitecin concentration in human plasma and urine. Karenitecin was isolated from human plasma and urine using solid-phase extraction. Separation was achieved by gradient elution, using a water and acetonitrile mobile phase, on an ODS analytical column. Karenitecin was detected using fluorescence detection at excitation and emission wavelengths of 370 and 490 nm, respectively. Retention time for karenitecin was 16.2±0.5 min and 8.0±0.2 min for camptothecin, the internal standard. The karenitecin peak was baseline resolved, with the nearest peak at 3.1 min distance. Using normal volunteer plasma and urine from multiple individuals, as well as samples from the 50 patients analyzed to date, no interfering peaks were detected. Inter- and intra-day coefficients of variance were <4.4 and 7.1% for plasma and <4.9 and 11.6% for urine. Assay precision, based on an extracted karenitecin standard plasma sample of 2.5 ng/ml, was +4.46% with a mean accuracy of 92.4%. For extracted karenitecin standard urine samples of 2.5 ng/ml assay precision was +2.35% with a mean accuracy of 99.5%. The mean recovery of karenitecin, at plasma concentrations of 1.0 and 50 ng/ml, was 81.9 and 87.8% respectively. In urine, at concentrations of 1.5 and 50 ng/ml, the mean recoveries were 90.3 and 78.4% respectively. The lower limit of detection (LLD) for karenitecin was 0.5 ng/ml in plasma and 1.0 ng/ml in urine. The lower limit of quantification (LLQ) for karenitecin was 1 ng/ml and 1.5 ng/ml for plasma and urine, respectively. Stability studies indicate that when frozen at −70°C, karenitecin is stable in human plasma for up to 3 months and in human urine for up to 1 month. This method is useful for the quantification of karenitecin in plasma and urine samples for clinical pharmacology studies in patients receiving this agent in clinical trials.  相似文献   

15.
A sensitive method for the determination of carbamazepine and carbamazepine 10,11-epoxide in plasma is described, using high-performance liquid chromatographic separation with tandem mass spectrometry. Samples were purified using liquid-liquid extraction and separated on a Phenomenex Luna C18 5 microm. 150 x 2 mm column with a mobile phase consisting of acetonitrile, methanol and formic acid (0.1%) (10:70:20, v/v). Detection was performed by a Micromass Quattro Ultima mass spectrometer in the MRM mode (LC-MS-MS) using electro spray ionisation (ESI+), monitoring the transition of the protonated molecular ion for carbamazepine at m/z 237.05 and carbamazepine 10,11-epoxide at m/z 253.09 to the predominant ions of m/z 194.09 and 180.04, respectively. The mean recovery was 95% for carbamazepine and 101% for carbamazepine 10,11-epoxide, with a lower limit of quantification of 0.722 ng/ml for carbamazepine and 5.15 ng/ml for carbamazepine 10,11-epoxide, when using 0.5 ml plasma. This high-throughput method was used to quantify 230 samples per day, and is sufficiently sensitive to be employed in pharmacokinetic studies.  相似文献   

16.
Underivatized codeine and dihydrocodeine in human plasma and urine have been determined with a high degree of accuracy by capillary gas chromatography (GC) with surface ionization detection (SID). The drugs were extracted with the aid of Sep-Pak C18 cartridges. Recovery of both drugs was 90%. The calibration curves obtained with dimemorfan as an internal standard showed linearity in the range 4.5–72.3 and 3.0–75.5 ng/ml of plasma for codeine and dihydrocodeine, respectively. The detection limit was about 100 pg on column (2.5 ng/ml sample). Codeine was determined quantitatively in plasma and urine obtained from a volunteer who had received 10 mg codeine phosphate orally 3 h before the sampling: the levels were found to be 14.1 and 142 ng/ml, respectively. The present GC-SID method has been compared carefully with GC-NPD (nitrogen-phosphorus detection) using the same extracts; the sensitivity of GC-SID was more than ten times greater than that of GC-NPD, with background noise correspondingly lower.  相似文献   

17.
A sensitive and specific liquid chromatography-tandem mass spectrometric (LC-MS-MS) method has been developed to determine m-nisoldipine in rat plasma. Sample was pretreated by a single-step protein precipitation with acetonitrile, in contrast to the liquid-liquid procedure frequently used for the extraction of 1,4-dihydropyridines from biologic samples. Separation of analyte and internal standard (I.S.) was performed on a Symmetry RP-C(18) analytic column (50 mm x 4.6 mm, 3.5 microm) with a mobile phase consisting of acetonitrile-water (80:20, v/v) at a flow rate of 0.5 ml/min. The API 4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring (MRM) scan mode using TurboIonSpray ionization (ESI) source. The method was sensitive with a lower limit of quantification (LLOQ) of 0.2 ng/mL, with good linearity (r>or=0.9982) over the linear range of 0.2-20 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic and relative bioavailability studies of m-nisoldipine polymorphs in rats.  相似文献   

18.
A fast and selective HPLC-MS-MS method was established to determine L-threonate in human plasma and urine. Plasma and urine samples were extracted by protein precipitation and diluted with water, then chromatographed on an YMC J'Sphere C(18) column with methanol-acetonitrile-10mM ammonium acetate (20:5:75, v/v) as mobile phase, and at a flow rate of 0.2 ml/min. Detection was performed on a triple-quadrupole tandem mass spectrometer using negative electrospray ionization (ESI). Multiple reactions monitoring (MRM) was used and L-threonate was quantified by monitoring the ion transition of m/z 134.5-->74.7. The linear calibration curves of L-threonate in plasma and urine were obtained over the concentration range of 0.25-50 microg/ml and 2.5-500 microg/ml, respectively. Lower limit of quantitation was 0.25 and 2.5 microg/ml, respectively. Accuracy was within 85-115%, and intra- and inter-batch precision (R.S.D.%) were within +/-15%. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of L-threonate in Chinese healthy subjects.  相似文献   

19.
A sensitive and selective method using high-performance liquid chromatography in combination with atmospheric pressure chemical ionization tandem mass spetrometry (LC-APCI-MS/MS) has been developed for the determination of Deoxynivalenol (DON) in trace levels. The extract was purified with a MultiSep? column followed by the Vicam? DON immunoaffinity column. Quantification is based on an external standard method using positive Multiple Reaction Monitoring (MRM). The limit of detection was 5 μg/kg with a signal to noise ratio of 3:1.  相似文献   

20.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane—dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography—electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a signal-to-noise ratio of > 3 and > 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号