首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
RORγt+ innate lymphoid cells (ILCs), or ILC3, play a fundamental role in the development of lymphoid tissues, as well as in homeostasis and defence of mucosal tissues. These cells produce IL-22, IL-17A and LTα1β2, key cytokines for the activation of epithelial defences and the recruitment of polymorphonuclear phagocytes. In the absence of ILC3, the early defence to infection and resistance to injury are compromised. Given the importance of ILC3 in mucosal immunity, significant efforts are made to discover their multiple functions and decipher their mode of action and regulation.  相似文献   

2.
With the discovery of innate lymphoid cells (ILCs), which are especially enriched in barrier surfaces, the family of innate lymphocytes has grown. A unique characterization of these cells can provide a phenotypical definition of ILCs and their specific functions in different tissue environments. Although ILCs are part of the innate immune system, they are derived from lymphoid lineages lacking rearranged antigen-specific and pattern-recognition receptors. The International Union of Immunological Societies (IUIS) favors the notion that ILCs can be generally divided into five main groups, namely, NK cells, ILC1s, ILC2s, ILC3s and LTi cells. These cells can be specifically stimulated by environmental and pathogen-derived signals. Upon stimulation, ILCs can rapidly secrete a wide range of soluble cytokines that can modulate the functions of effector cells. Over the last decade, ILCs, especially helper ILCs, which do not include NK cells, have been recognized to be a crucial cell type involved in integrating diverse host immune responses. Recently, emerging research has shown that helper ILCs also play a critical role in promoting tissue restoration and immune responses at barrier surfaces. Notably, helper ILCs act as a double-edged sword, being involved in the inflammatory and reparative responses during homeostasis and disease. Therefore, in this review, we summarize the current findings regarding the molecular characteristics and tissue-specific effector functions of helper ILCs in the uterus during physiological and pathological pregnancy and in the intestine during homeostasis and inflammation.  相似文献   

3.
Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid‐dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid‐presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)?CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T‐cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL‐22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d‐mediated immunity, which can modulate tissue homeostasis and inflammatory responses.  相似文献   

4.
5.
Whereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2 CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.Subject terms: Innate immunity, Haematopoietic stem cells  相似文献   

6.
7.
8.
Innate lymphoid cells (ILCs) comprise a heterogeneous population of immune cells that maintain barrier function and can initiate a protective or pathological immune response upon infection. Here we show the involvement of IL-17A-producing ILCs in microbiota-driven immunopathology in cutaneous leishmaniasis. IL-17A-producing ILCs were RORγt+ and were enriched in Leishmania major infected skin, and topical colonization with Staphylococcus epidermidis before L. major infection exacerbated the skin inflammatory responses and IL-17A-producing RORγt+ ILC accumulation without impacting type 1 immune responses. IL-17A responses in ILCs were directed by Batf3 dependent CD103+ dendritic cells and IL-23. Moreover, experiments using Rag1-/- mice established that IL-17A+ ILCs were sufficient in driving the inflammatory responses as depletion of ILCs or neutralization of IL-17A diminished the microbiota mediated immunopathology. Taken together, this study indicates that the skin microbiota promotes RORγt+ IL-17A-producing ILCs, which augment the skin inflammation in cutaneous leishmaniasis.  相似文献   

9.
10.
11.
Natural killer (NK) cells are the prototypical members of the recently identified family of innate lymphoid cells (ILCs). Thanks to their cytotoxic and secretory functions, NK cells play a key role in the immune response to cells experiencing various forms of stress, including viral infection and malignant transformation. Autophagy is a highly conserved network of degradative pathways that participate in the maintenance of cellular and organismal homeostasis as they promote adaptation to adverse microenvironmental conditions. The relevance of autophagy in the development and functionality of cellular components of the adaptive immune system is well established. Conversely, whether autophagy also plays an important role in the biology of ILC populations such as NK cells has long remained elusive. Recent experimental evidence shows that ablating Atg5 (autophagy-related 5, an essential component of the autophagic machinery) in NK cells and other specific ILC populations results in progressive mitochondrial damage, reactive oxygen species (ROS) overgeneration, and regulated cell death, hence interrupting ILC development. Moreover, disrupting the interaction of ATG7 with phosphorylated FOXO1 (forkhead box O1) in the cytosol of immature NK cells prevents autophagic responses that are essential for NK cell maturation. These findings suggest that activating autophagy may support the maturation of NK cells and other ILCs that manifest antiviral and anticancer activity.  相似文献   

12.
BackgroundGroup 2 Innate lymphoid cells (ILC2s) are innate cells that produce the TH2 cytokines IL-5 and IL-13. The importance of these cells has recently been demonstrated in experimental models of parasitic diseases but there is a paucity of data on ILC2s in the context of human parasitic infections and in particular of the blood dwelling parasite Schistosoma haematobium.ConclusionThis study demonstrates that ILC2s are diminished in young helminth infected children and restored by removal of the parasites by treatment, indicating a previously undescribed association between a human parasitic infection and ILC2s and suggesting a role of ILC2s before the establishment of protective acquired immunity in human schistosomiasis.  相似文献   

13.
14.
Respiratory virus infections, such as influenza, typically induce a robust type I (pro-inflammatory cytokine) immune response, however, the production of type 2 cytokines has been observed. Type 2 cytokine production during respiratory virus infection is linked to asthma exacerbation; however, type 2 cytokines may also be tissue protective. Interleukin (IL)-5 is a prototypical type 2 cytokine that is essential for eosinophil maturation and egress out of the bone marrow. However, little is known about the cellular source and underlying cellular and molecular basis for the regulation of IL-5 production during respiratory virus infection. Using a mouse model of influenza virus infection, we found a robust transient release of IL-5 into infected airways along with a significant and progressive accumulation of eosinophils into the lungs, particularly during the recovery phase of infection, i.e. following virus clearance. The cellular source of the IL-5 was group 2 innate lymphoid cells (ILC2) infiltrating the infected lungs. Interestingly, the progressive accumulation of eosinophils following virus clearance is reflected in the rapid expansion of c-kit+ IL-5 producing ILC2. We further demonstrate that the enhanced capacity for IL-5 production by ILC2 during recovery is concomitant with the enhanced expression of the IL-33 receptor subunit, ST2, by ILC2. Lastly, we show that NKT cells, as well as alveolar macrophages (AM), are endogenous sources of IL-33 that enhance IL-5 production from ILC2. Collectively, these results reveal that c-kit+ ILC2 interaction with IL-33 producing NKT and AM leads to abundant production of IL-5 by ILC2 and accounts for the accumulation of eosinophils observed during the recovery phase of influenza infection.  相似文献   

15.
《Cytotherapy》2022,24(3):302-310
BackgroundAllogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties. After chemo- and radiotherapy, ILCs are depleted, and recovery after remission-induction therapy and after allogeneic HCT is slow and incomplete in a significant number of patients, which is associated with an increased risk to develop acute GvHD.ObjectiveTo investigate whether the presence of mature ILCs within G-CSF–mobilized HCT grafts is correlated with the development of acute GvHD after allogeneic HCT.Study DesignWe analyzed ILCs in a cohort of 36 patients who received allogeneic HCT for a hematologic malignancy, by flow-cytometric immune-phenotyping of prospectively collected, cryopreserved peripheral blood mononuclear cells (PBMCs) and donor-derived HCT grafts collected for the same patients. Biased analysis, with ILCs defined as CD3?lineage?CD45+CD127+CD161+ lymphocytes, was performed using FlowJo version 10 software. Unbiased analysis was done using FlowSOM, which uses a self-organizing map (SOM) with a minimal spanning tree (MST) to define and visualize different clusters present in the samples.ResultsRemission-induction therapy significantly depleted ILCs from the blood, and patients who had a relatively low percentage of ILCs before allogeneic HCT were significantly more prone to develop acute GvHD, confirming previous findings in a separate cohort. Allogeneic HCT grafts, which were all obtained from the blood of G-CSF–mobilized healthy donors, contained ILCs at a frequency very similar to the peripheral blood of healthy individuals. The ILC subset composition was also comparable to that of the blood of healthy individuals, with the exception of NKp44+ ILC3s, which were significantly more abundant in HCT grafts. The relative ILC content of the graft tended to correlate with ILC reconstitution after allogeneic HCT, suggesting that peripheral expansion of transplanted mature ILCs may contribute to early ILC reconstitution after allogeneic HCT. Patients who received a relatively ILC-poor HCT graft had a significantly increased risk to develop acute GvHD, compared with patients who received relatively ILC-rich allogeneic HCT grafts. Unbiased phenotypic analysis with the FlowSOM algorithm confirmed that allogeneic HCT grafts of patients who developed acute GvHD contained a lower frequency of ILCs that clustered in NKp44+ ILC3 signature groups.ConclusionThe presence of ILCs in allogeneic HCT grafts is associated with a reduced risk to develop acute GvHD. These data suggest that enhancement of ILC reconstitution of ILC3s in particular, for example via adoptive transfer of ILCs, may prevent acute GvHD and has the potential to improve outcome of allogeneic HCT recipients.  相似文献   

16.
Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths.  相似文献   

17.
天然辅助细胞(natural helper cell,NHC)是一种近期发现于鼠体内的2型固有淋巴细胞(innate lymphoid cells,ILCs2)。NHC起源于骨髓淋巴系祖细胞,由iNH细胞分化而来,且处于分化终末阶段。这些细胞主要位于腹腔内的脂肪相关淋巴簇(fat-associated lymphoid cluster,FALC)与肺组织中,在其形态及特征方面,与淋巴细胞具有相似性。其表面高度表达-kit、sca-1、IL-7R,而缺乏lineage标记。经过不同刺激信号的作用,NHC可产生相应的Th2型细胞因子,如IL-5、IL-6与IL-13,进而调节IgA抗体的产生并辅助B1细胞自我更新。NHC分泌的大量IL-5和IL-13可促进嗜酸性粒细胞与杯状细胞的增生,同时促进黏液分泌,参与过敏反应及呼吸道炎症的发生并在抵抗寄生虫感染的过程中发挥关键作用。  相似文献   

18.
Cerebral malaria (CM) is a complex parasitic disease caused by Plasmodium sp. Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to the development of cerebral pathology. Using the blood-stage PbA (Plasmodium berghei ANKA) model of infection, we show here that administration of the pro-Th2 cytokine, IL-33, prevents the development of experimental cerebral malaria (ECM) in C57BL/6 mice and reduces the production of inflammatory mediators IFN-γ, IL-12 and TNF-α. IL-33 drives the expansion of type-2 innate lymphoid cells (ILC2) that produce Type-2 cytokines (IL-4, IL-5 and IL-13), leading to the polarization of the anti-inflammatory M2 macrophages, which in turn expand Foxp3 regulatory T cells (Tregs). PbA-infected mice adoptively transferred with ILC2 have elevated frequency of M2 and Tregs and are protected from ECM. Importantly, IL-33-treated mice deleted of Tregs (DEREG mice) are no longer able to resist ECM. Our data therefore provide evidence that IL-33 can prevent the development of ECM by orchestrating a protective immune response via ILC2, M2 macrophages and Tregs.  相似文献   

19.
The inflammasome is an innate immune complex whose rapid inflammatory outputs play a critical role in controlling infection; however, the host cells that mediate inflammasome responses in vivo are not well defined. Using zebrafish larvae, we examined the cellular immune responses to inflammasome activation during infection. We compared the host responses with two Listeria monocytogenes strains: wild type and Lm‐pyro, a strain engineered to activate the inflammasome via ectopic expression of flagellin. Infection with Lm‐pyro led to activation of the inflammasome, macrophage pyroptosis and ultimately attenuation of virulence. Depletion of caspase A, the zebrafish caspase‐1 homolog, restored Lm‐pyro virulence. Inflammasome activation specifically recruited macrophages to infection sites, whereas neutrophils were equally recruited to wild type and Lm‐pyro infections. Similar to caspase A depletion, macrophage deficiency rescued Lm‐pyro virulence to wild‐type levels, while defective neutrophils had no specific effect. Neutrophils were, however, important for general clearance of L. monocytogenes, as both wild type and Lm‐pyro were more virulent in larvae with defective neutrophils. This study characterizes a novel model for inflammasome studies in an intact host, establishes the importance of macrophages during inflammasome responses and adds importance to the role of neutrophils in controlling L. monocytogenes infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号