首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A subpopulation of Yanshan cashmere goats with crimped fibre has emerged in a closed population in recent years, but little is known about differences in cashmere production performance, skin characteristics, and fibre-style-related genes between goats with different cashmere fibre styles. Therefore, the aim of this study was to investigate fibre characteristics, cashmere yield, hair follicle traits, and fibre-style-related genes in cashmere goats with the two cashmere fleece styles—non-crimped and crimped. Based on the cashmere fibre type, 80 six-month-old female Yanshan cashmere goats were used in this study: 40 goats with non-crimped fleece (NCF) and 40 with crimped fleece (CF). The growth performance and cashmere production of the goats were recorded. Skin samples were collected to determine hair follicle traits and gene sequencing. The results indicated that there were no differences in initial live weight, final live weight, average daily feed intake, and average daily gain between the two groups of goats (P > 0.05). The total yield of cashmere and the stretched length of fibre of the CF goats were higher (P < 0.01 and P < 0.05, respectively) and fibre diameter was lower (P < 0.05) than that of the NCF goats. There were no between-group differences in the density and activity of primary and secondary hair follicles, secondary-to-primary fibre ratio, depth of primary follicles, or epidermal thickness. However, the depth of secondary follicles and dermal thickness were higher (P < 0.05) in NCF goats than in CF goats. There were mutations in the KRT5, KAP8, KRT8, KRT74, KRT34, KRT1, KRT71, KRT6A, KAP6, KRT81, and KRT83 genes, four of which caused amino acid changes. The allele and genotype frequencies of base mutations in the KRT5, KAP8, KRT34, KRT1, KRT6A, KRT81, and KRT83 genes were different in the NCF and CF goats (P < 0.05). The distribution and content of the secondary structure elements and tertiary structures of proteins differed between the wide-type and mutated KRT1 and KRT6A proteins. KRT1, KRT6A, KRT71, and TGFα mRNA expression levels were significantly higher in CF goats than in NCF goats (P < 0.05). It is concluded that cashmere goats that have fleece with crimped fibres produce a greater yield of fleece with finer diameter fibres than those with conventional straight cashmere fibres. These differences in fibre properties may be associated with mutations in the genes coding for KRT1 and KRT6A.  相似文献   

3.
Increasing cashmere yield is one of the vital aims of cashmere goats breeding. Compared to traditional breeding methods, transgenic technology is more efficient and the piggyBac (PB) transposon system has been widely applied to generate transgenic animals. For the present study, donor fibroblasts were stably transfected via a PB donor vector containing the coding sequence of cashmere goat thymosin beta-4 (Tβ4) and driven by a hair follicle-specific promoter, the keratin-associated protein 6.1 (KAP6.1) promoter. To obtain genetically modified cells as nuclear donors, we co-transfected donor vectors into fetal fibroblasts of cashmere goats. Five transgenic cashmere goats were generated following somatic cell nuclear transfer (SCNT). Via determination of the copy numbers and integration sites, the Tβ4 gene was successfully inserted into the goat genome. Histological examination of skin tissue revealed that Tβ4-overexpressing, transgenic goats had a higher secondary to primary hair follicle (S/P) ratio compared to wild type goats. This indicates that Tβ4-overexpressing goats possess increased numbers of secondary hair follicles (SHF). Our results indicate that Tβ4-overexpression in cashmere goats could be a feasible strategy to increase cashmere yield.  相似文献   

4.
《Genomics》2020,112(1):332-345
Guard hair and cashmere undercoat are developed from primary and secondary hair follicle, respectively. Little is known about the gene expression differences between primary and secondary hair follicle cycling. In this study, we obtained RNA-seq data from cashmere and milk goats grown at four different seasons. We studied the differentially expressed genes (DEGs) during the yearly hair follicle cycling, and between cashmere and milk goats. WNT, NOTCH, MAPK, BMP, TGFβ and Hedgehog signaling pathways were involved in hair follicle cycling in both cashmere and milk goat. However, Milk goat DEGs between different months were significantly more than cashmere goat DEGs, with the largest difference being identified in December. Some expression dynamics were confirmed by quantitative PCR and western blot, and immunohistochemistry. This study offers new information sources related to hair follicle cycling in milk and cashmere goats, which could be applicable to improve the wool production and quality.  相似文献   

5.
6.
7.
Melatonin treatment in adult cashmere goats can increase cashmere yield and improve cashmere fibre quality by inducing cashmere growth during cashmere non-growth period, of which time cashmere goats are in the mid and late stages of lactation. However, whether melatonin treatment in adult cashmere goats affects their offspring’s growth performance remains unknown. Therefore, the objectives of the current study were to determine the effects of melatonin treatment in adult cashmere goats on cashmere and milk production performance in dams and on hair follicle development and subsequent cashmere production in their offspring. Twenty-four lactating Inner Mongolian Cashmere goat dams (50 ± 2 days in milk, mean ± SD) and their single-born female offspring (50 ± 2 days old, mean ± SD) were randomly assigned to one of two groups supplemented with melatonin implants (MEL; n = 12) or without (CON; n = 12). The melatonin implants were subcutaneously implanted behind the ear at a dose of 2 mg/kg live weight on two occasions – 30 April and 30 June 2016. The results demonstrated that melatonin treatment in adult cashmere goats increased cashmere production and improved cashmere fibre quality as indicated by greater cashmere yield, longer cashmere fibre staple length, finer cashmere fibre diameter and thicker cashmere fibre density. The milk fat content was higher in MEL compared with CON cashmere goats. The daily yields of milk production, milk protein and milk lactose were lower in MEL compared with CON cashmere goats. Serum melatonin concentrations were greater, serum prolactin concentrations were lower and milk melatonin concentrations and yields were greater in MEL compared with CON cashmere goats. With regard to offspring, there were no differences in cashmere yield, fibre staple length, fibre diameter and fibre density at yearling combing, and the primary and secondary hair follicles population and maturation between treatments. In conclusion, melatonin treatment in adult cashmere goats during cashmere non-growth period is a practical and an effective way in cashmere industry as indicated by not only increasing cashmere yield and improving cashmere fibre quality in adult cashmere goat dams but also having no impairment in hair follicle development and the subsequent cashmere production in their single-born offspring.  相似文献   

8.
Liaoning cashmere goats are the most precious genetic resources in China. The function of LAMTOR3 [late endosomal/lysosomal adaptor, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin activator 3/MAPK scaffold protein 1] gene is expressed in the skin of Liaoning cashmere goats. In situ hybridization (ISH) found that LAMTOR3 is expressed in the inner root sheath (IRS) of hair follicles. During the anagen or catagen phase, the expression of LAMTOR3 is higher in secondary hair follicles than in primary hair follicles. Expression of LAMTOR3 in skin cells treated with melatonin or insulin-like growth factor-1 (IGF-1) is lower than in untreated cells. In addition, the simultaneous treatment of fibroblast growth factor 5 and melatonin decrease the expression of LAMTOR3 in skin cells. The simultaneous treatment with melatonin and 10?5?g/L IGF-1 or 10?4?g/L IGF-1 increases the expression of LAMTOR3 gene in skin cells. If Noggin expression is decreased, then LAMTOR3 expression is increased. This hypothesis suggested that LAMTOR3 influences the character of cashmere fiber, and it may regulate the development of hair follicle and cashmere growth by inducing the MAPK signaling pathway.  相似文献   

9.
《Genomics》2022,114(2):110316
The problem of human hair loss has caused widespread concern, however, such research is difficult because the periodicity is not obvious and the deeper levels knowledge of dermal papilla (DP) stem cells' differentiation are limited. Here, cashmere goats which have obvious periodicity of hair follicles were used, based on unbiased scRNA sequencing, we constructed DP cell lineage differentiation trajectory and revealed the key genes, signals and functions involved in cell fate decisions. And then we revealed the molecular landscape of hair follicle on regeneration. Revealed that DP cells differentiate into four intermediate cell states at different periodicity: Intermediate-cell-10 showed important functions in the growth and maintenance of cashmere; intermediate-cell-1 acting on apoptosis and cashmere shedding; intermediate-cell-0 initiated new follicular cycles, the migration of hair follicles and the occurrence of cashmere; and intermediate-cell-15 are suggested to be DP progenitor cells. In general, we provide new insights for hair regrowth. At the same time, it provides a new research ideas, directions and molecular landscape for the mechanism of dermal papilla cells.  相似文献   

10.
11.
The hair follicle (HF) is an important mini-organ of the skin, composed of many types of cells. Dermal papilla cells are important signalling components that guide the proliferation, upward migration and differentiation of HF stem cell progenitor cells to form other types of HF cells. Thymosin β4 (Tβ4), a major actin-sequestering protein, is involved in various cellular responses and has recently been shown to play key roles in HF growth and development. Endogenous Tβ4 can activate the mouse HF cycle transition and affect HF growth and development by promoting the migration and differentiation of HF stem cells and their progeny. In addition, exogenous Tβ4 increases the rate of hair growth in mice and promotes cashmere production by increasing the number of secondary HFs (hair follicles) in cashmere goats. However, the molecular mechanisms through which Tβ4 promotes HF growth and development have rarely been reported. Herein, we review the functions and mechanisms of Tβ4 in HF growth and development and describe the endogenous and exogenous actions of Tβ4 in HFs to provide insights into the roles of Tβ4 in HF growth and development.  相似文献   

12.
13.
14.
Inner Mongolia cashmere goat marks a precious gerplasm genetic resource due to its excellent cashmere traits. Therefore, it is of crucial importance to investigate the cashmere development mechanism of cashmere goat and to search for the important cashmere growth-related candidate genes. Fetal skin samples at 10 different periods of cashmere goat were collected in this research. Moreover, high-throughput sequencing was conducted on RNA samples from side skin of cashmere goat fetuses collected at three critical periods of skin hair follicle initiation, growth and development (namely, 45, 55 and 65?days) after balanced mix in line with the previous research results. Meanwhile, 3 samples at corresponding periods were used as the biological duplications. Data regarding microRNA and mRNA expression in skin and hair follicles of cashmere goats at various fetal periods were obtained using the high-throughput sequencing method. The results indicated that microRNAs in the oar-let-7 and oar-miR-200 families in 55?days and 66?days of pregnancy samples had been notably up-regulated relative to those in 45?days of pregnancy samples. This revealed that they might be the critical microRNAs in hair follicle development.  相似文献   

15.
Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding.  相似文献   

16.
Cashmere is a rare and specialised animal fibre, which grows on the outer skin of goats. Owing its low yield and soft, light, and warm properties, it has a high economic value. Here, we attempted to improve existing cashmere goat breeds by simultaneously increasing their fibre length and cashmere yield. We attempted this by knocking in the vascular endothelial growth factor (VEGF) at the fibroblast growth factor 5(FGF5) site using a gene editing technology and then studying its hair growth-promoting mechanisms. We show that a combination of RS-1 and NU7441 significantly improve the efficiency of CRISPR/Cas9-mediated, homologous-directed repair without affecting the embryo cleavage rate or the percentages of embryos at different stages. In addition, we obtained a cashmere goat, which integrated the VEGF gene at the FGF5 site, and the cashmere yield and fibre length of this gene-edited goat were improved. Through next-generation sequencing, we found that the up-regulation of VEGF and the down-regulation of FGF5 affected the cell cycle, proliferation, and vascular tone through the PI3K-AKT signalling pathway and at extracellular matrix-receptor interactions. Owing to this, the gene-edited cashmere goat showed impressive cashmere performance. Overall, in this study, we generated a gene-edited cashmere goat by integrating VEGF at the FGF5 site and provided an animal model for follow-up research on hair growth mechanisms.  相似文献   

17.
Light-dark coat color variation is a common aspect of color diversity within and across mammalian taxa. This variation in pelage brightness is associated with aspects of evolutionary ecology, particularly for primates, but little is known about the genetic mechanisms underlying light-dark differences in pelage pigmentation. Previous work, focusing particularly on macaques (Genus Macaca), has found no clear relationship between color variation and coding sequences of key pigmentation genes. This suggests that other loci and/or gene regulatory differences underlie this variation and raises the question of how patterns of gene expression differ in light verses dark hair follicles. Here, we examine relative expression levels of pigmentation genes in hair follicles from free-ranging rhesus macaques (Macaca mulatta) showing stark light-dark coat color variation. We quantified the brightness (reflectance) of plucked hair tufts using a spectrophotometer. We extracted RNA from the follicles and used quantitative RT-PCR to measure the relative amounts of gene product (mRNA) for seven candidate pigmentation genes (MITF, MC1R, MGRN1, ATRN, SLC24A5, TYRP1, and DCT). Expression values were normalized with the house-keeping gene ACTB. All candidate genes were expressed at similar levels in dark, intermediate, and light hair, and thus, light-dark variation in macaque coat color is unlikely to be due to differences in the expression of these key pigmentation genes. This study represents the first examination of gene expression and natural color variation in a non-human primate population. Our results indicate that even in a system, like pigmentation, where a candidate-gene approach is promising, identifying important intra-specific gene regulatory differences remains challenging.  相似文献   

18.
Heart failure (HF) remains a common complication after acute ST-segment elevation myocardial infarction (STEMI). Here, we aim to identify critical genes related to the developed HF in patients with STEMI using bioinformatics analysis. The microarray data of GSE59867, including peripheral blood samples from nine patients with post-infarct HF and eight patients without post-infarct HF, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HF and non-HF groups were screened by LIMMA package. Functional enrichment analyses of DEGs were conducted, followed by construction of a protein-protein interaction (PPI) network. The dynamic messenger RNA (mRNA) level of the hub genes during the follow-up was analyzed to further elucidate their role in HF development. A total of 58 upregulated and 75 downregulated DEGs were screen out. They were mainly enriched in biological processes about inflammatory response, extracellular matrix organization, response to cAMP, immune response, and positive regulation of cytosolic calcium ion concentration. Pathway analysis revealed that the DEGs were also involved in hematopoietic cell lineage, pathways in cancer, and extracellular matrix-receptor interaction. In the PPI network consisting of 58 nodes and 72 interactions, CXCL8 (degree = 15), THBS1 (degree = 8), FOS (degree = 7), and ITGA2B (degree = 6) were identified as the hub genes. In the comparison of patients with and without post-infarct HF, the mRNA level of these hub genes were all higher within 30 days but reached similar at 6 months after STEMI. In conclusion, CXCL8, THBS1, FOS, and ITGA2B may play important roles in the development of HF after acute STEMI.  相似文献   

19.
Keratin-associated protein 9.2 (KAP9.2) and Homeobox C13 (Hoxc13) genes were chosen to study because of their biological functions involving hair formation. KAP9.2 gene belongs to the ultra high sulfur KAPs, which is important for hair formation and may have association with cashmere. Hoxc13 takes part in the formation of cashmere keratin and maintaining the normal structure of follicle. It has been reported that Hoxc13 gene exists binding site of KP and KAP genes at its promoter regions in mouse. So the expression of KAP9.2 and Hoxc13 genes was detected at anagen stage vs telogen stage by qRT-PCR. The data showed that KAP9.2 and Hoxc13 gene had similar expression trend at different stages, which indicated that there was interaction between them. KAP9.2 and Hoxc13 gene had lower expression level in anagen than that of in telogen of cashmere growth. In anagen, KAP9.2 and Hoxc13 expressed lower in high cashmere yield individuals than that of in low cashmere yield ones. In telogen, the result was reverse. The study would provide the evidence of involvement of KAP9.2 and Hoxc13 in hair periodic growth.  相似文献   

20.
Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) expression in acute promyelocytic leukemia (APL) impairs transforming growth factor beta (TGFβ) signaling, leading to cell growth advantage. Halofuginone (HF), a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG). Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001) and induced apoptosis (P = 0.002) after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21) and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号