首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high prevalence of Brucella pinnipedialis serology and bacteriology positive animals has been found in the Northeast Atlantic stock of hooded seal ( Cystophora cristata ); however no associated gross pathological changes have been identified. Marine mammal brucellae have previously displayed different infection patterns in human and murine macrophages. To investigate if marine mammal Brucella spp. are able to invade and multiply in cells originating from a presumed host species, we infected alveolar macrophages from hooded seal with a B . pinnipedialis hooded seal isolate. Hooded seal alveolar macrophages were also challenged with B . pinnipedialis reference strain (NCTC 12890) from harbor seal ( Phoca vitulina ), B . ceti reference strain (NCTC 12891) from harbor porpoise ( Phocoena phocoena ) and a B . ceti Atlantic white-sided dolphin ( Lagenorhynchus acutus ) isolate (M83/07/1), to evaluate possible species-specific differences. Brucella suis 1330 was included as a positive control. Alveolar macrophages were obtained by post mortem bronchoalveolar lavage of euthanized hooded seals. Phenotyping of cells in the lavage fluid was executed by flow cytometry using the surface markers CD14 and CD18. Cultured lavage cells were identified as alveolar macrophages based on morphology, expression of surface markers and phagocytic ability. Alveolar macrophages were challenged with Brucella spp. in a gentamicin protection assay. Following infection, cell lysates from different time points were plated and evaluated quantitatively for colony forming units. Intracellular presence of B . pinnipedialis hooded seal isolate was verified by immunocytochemistry. Our results show that the marine mammal brucellae were able to enter hooded seal alveolar macrophages; however, they did not multiply intracellularly and were eliminated within 48 hours, to the contrary of B. suis that showed the classical pattern of a pathogenic strain. In conclusion, none of the four marine mammal strains tested were able to establish a persistent infection in primary alveolar macrophages from hooded seal.  相似文献   

2.
Marine mammal Brucella strains with different genomic characteristics according to distribution of IS711 elements in their genomes were analysed for their intracellular behaviour in human THP-1 macrophage-like cells. Seven different groups of marine mammal strains were identified including a human isolate from New Zealand presumably from marine origin. Entry and intracellular survival of strains representative of these groups in THP-1 human macrophage-like cells were analysed at several times of infection. Three patterns of infection were identified. The Brucella strain isolated from the human case from New Zealand, and two other groups of strains belonging to B. ceti or B. pinnipedialis were able to infect THP-1 macrophage cells to the same extent as the virulent strains B. suis 1330 or B. melitensis 16M. Three other groups of strains belonging to B. ceti or B. pinnipedialis were able to enter the cells as classical virulent strains but were eliminated after 48 h. The last group was composed only of strains isolated from hooded seals (Cystophora cristata) and was even unable to enter and infect THP-1 macrophage cells. Thus, several groups of marine mammal Brucella strains appear to be non-infectious for human macrophages.  相似文献   

3.
Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.  相似文献   

4.

Background  

Bacteria of the genus Brucella are the causative organisms of brucellosis in animals and man. Previous characterisation of Brucella strains originating from marine mammals showed them to be distinct from the terrestrial species and likely to comprise one or more new taxa. Recently two new species comprising Brucella isolates from marine mammals, B. pinnipedialis and B. ceti, were validly published. Here we report on an extensive study of the molecular and phenotypic characteristics of marine mammal Brucella isolates and on how these characteristics relate to the newly described species.  相似文献   

5.
Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.  相似文献   

6.
Brucellosis is a zoonosis caused by bacteria of the genus Brucella, which includes nine species: B. melitensis (goats and sheep as the main reservoir hosts), B. abortus (cattle), B. suis (pigs), B. neotomae (desert woodrats), B. ovis (sheep), B. canis (dogs), B. ceti (whales), B. pinnipedialis (pinnipeds), and B. microti (Microtus voles). The epidemic and epizootic situation with brucellosis is accounted for by farm animals, which are the carriers of three main pathogens (B. melitensis, B. abortus, and B. suis). Their ubiquitous distribution is the factor determining global prevalence of the above Brucella species on all continents and in the overwhelming majority of countries. Consistent with the expansion of the pathogen ecological range are the 1990s findings of new Brucella species in marine mammals (whales and pinnipeds) and in some rodents. These bacteria proved to be also pathogenic for terrestrial mammals and humans. All Brucella-infected animals considered in the paper are tentatively divided into two groups. The first includes most of the wild and domestic animal species, birds, and ticks that acquire the infection farm animals, the main hosts of Brucella. The second group includes animals (wild reindeer, hares, bison, and probably saiga antelopes, dogs, and marine mammals) which may carry Brucella regardless of infection prevalence in the main hosts.  相似文献   

7.

Background

MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures.

Methodology/Principal Findings

We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct.

Conclusions/Significance

MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles.  相似文献   

8.
Inhalation is a common route for Brucella infection. We investigated whether Brucella species can invade and replicate within alveolar (A549) and bronchial (Calu-6 and 16HBE14o-) human epithelial cells. The number of adherent and intracellular bacteria was higher for rough strains (Brucella canis and Brucella abortus RB51) than for smooth strains (B. abortus 2308 and Brucella suis 1330). Only smooth strains exhibited efficient intracellular replication (1.5–3.5 log increase at 24 h p.i.). A B. abortus mutant with defective expression of the type IV secretion system did not replicate. B. abortus internalization was inhibited by specific inhibitors of microfilaments, microtubules and PI3-kinase activity. As assessed with fluorescent probes, B. abortus infection did not affect the viability of A549 and 16HBE14o- cells, but increased the percentage of injured cells (both strains) and dead cells (RB51) in Calu-6 cultures. LDH levels were increased in supernatants of Calu-6 and 16HBE14o- cells infected with B. abortus RB51, and to a lower extent in Calu-6 infected with B. abortus 2308. No apoptosis was detected by TUNEL upon infection with smooth or rough B. abortus. This study shows that smooth brucellae can infect and replicate in human respiratory epithelial cells inducing minimal or null cytotoxicity.  相似文献   

9.
Brucella is a genus of relatively conservative pathogenic bacteria. Brucella suis is the most diversified Brucella species. Strains of B. suis belong to different sequence types. Here, we report the genome sequence of B. suis strain BCB025, one isolate of the sequence type 22 epidemic in China.  相似文献   

10.
A number of recent reports have described the isolation and characterization of Brucella strains from a wide variety of marine mammals such as seals, porpoises, dolphins and a minke whale. These strains were identified as brucellae by conventional typing tests. However, their overall characteristics were not assimilable to those of any of the six currently recognized Brucella species and it was suggested that they comprise a new nomen species to be called Brucella maris. In the present study we analysed DNA polymorphism at the omp2 locus of 33 marine mammal Brucella strains isolated from seals, dolphins, porpoises and an otter. The omp2 locus contains two gene copies (named omp2a and omp2b) coding for porin proteins and has been found particularly useful for molecular typing and identification of Brucella at the species, biovar, or strain level. PCR-restriction fragment length polymorphism (RFLP) and DNA sequencing showed that strains isolated from dolphins and porpoises carry two omp2b gene copies instead of one omp2a and one omp2b gene copy or two similar omp2a gene copies reported in the currently recognized species. This observation was also recently made for a minke whale Brucella isolate. The otter and all seal isolates except one were shown to carry one omp2a and one omp2b gene copy as encountered in isolates from terrestrial mammals. By PCR-RFLP of the omp2b gene, a specific marker was detected grouping the marine mammal Brucella isolates. Although marine mammal Brucella isolates may represent a separate group from terrestrial mammal isolates based on omp2b sequence constructed phylogenetic trees, the divergence found between their omp2b and also between their omp2a nucleotide sequences indicates that they form a more heterogeneous group than isolates from terrestrial mammals. Therefore, grouping the marine mammal Brucella isolates into one species Brucella maris seems inappropriate unless the currently recognized Brucella species are grouped. With respect to the current classification of brucellae according to the preferential host, brucellae isolated from such diverse marine mammal species as seals and dolphins could actually comprise more than one species, and at least two new species, B. pinnipediae and B. cetaceae, could be compatible with the classical criteria of host preferentialism and DNA polymorphism at their omp2 locus.  相似文献   

11.
The use of whole-cell antigens in agglutination and agglutinin-absorption tests showed that the organism causing abortion in dogs is similar to rough Brucella abortus, B. melitensis, and B. ovis, but different from smooth Brucella cultures. Water-soluble antigens obtained by ultrasonic treatment and examined by immuno-electrophoresis and gel diffusion show extensive cross-reactions within the genus Brucella, but little or no cross-reaction with similar antigens from other gram-negative genera in the family Brucellaceae. The dog organism showed near identity with rough and smooth Brucella cultures on the basis of immuno-gel diffusion tests with water-soluble antigens, but it lacked the lipopolysaccharide-endotoxin associated with the agglutinogen of smooth brucellae. These findings support the proposal of Carmichael and Bruner for the designation of a new species, “Brucella canis.”  相似文献   

12.
Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.  相似文献   

13.
The brucellae are Gram-negative bacteria that cause an important zoonosis. Studies with the main Brucella species have shown that the O-antigens of the Brucella smooth lipopolysaccharide are α-(1→2) and α-(1→3)-linked N-formyl-perosamine polysaccharides that carry M, A and C (A = M, A>M and A<M) epitopes relevant in serodiagnosis and typing. We report that, in contrast to the B. suis biovar 1 O-antigen used as a reference or to all described Brucella O-antigens, B. suis biovar 2 O-antigen failed to bind monoclonal antibodies of C (A = M), C (M>A) and M specificities. However, the biovar 2 O-antigen bound monoclonal antibodies to the Brucella A epitope, and to the C/Y epitope shared by brucellae and Yersinia enterocolitica O:9, a bacterium that carries an N-formyl-perosamine O-antigen in exclusively α-(1→2)-linkages. By 13C NMR spectroscopy, B. suis biovar 1 but not B. suis biovar 2 or Y. enterocolitica O:9 polysaccharide showed the signal characteristic of α-(1→3)-linked N-formyl-perosamine, indicating that biovar 2 may altogether lack this linkage. Taken together, the NMR spectroscopy and monoclonal antibody analyses strongly suggest a role for α-(1→3)-linked N-formyl-perosamine in the C (A = M) and C (M>A) epitopes. Moreover, they indicate that B. suis biovar 2 O-antigen lacks some lipopolysaccharide epitopes previously thought to be present in all smooth brucellae, thus representing a new brucella serovar that is M-negative, C-negative. Serologically and structurally this new serovar is more similar to Y. enterocolitica O:9 than to other brucellae.  相似文献   

14.
Although Brucella frequently infects humans through inhalation, its interaction with pulmonary cells has been overlooked. We examined whether human lung epithelial cells produce proinflammatory mediators in response to Brucella infection. Infection with smooth or rough strains of Brucella abortus induced the secretion of IL-8 and GM-CSF by the bronchial epithelial cell lines Calu-6 and 16HBE14o-, but not by the alveolar epithelial cell line A549. Infected Calu-6 cells also produced low levels of MCP-1. Since monocyte-derived cytokines may induce chemokine secretion in epithelial cells, cocultures of human monocytes (THP-1 cell line) and respiratory epithelial cells were used to study such interaction. IL-8 and MCP-1 levels in B. abortus-infected THP-1:A549 and THP-1:Calu-6 cocultures, and MCP-1 levels in THP-1:16HBE14o- cocultures, were higher than those detected in infected epithelial monocultures. Conditioned medium from infected monocytes induced the secretion of IL-8 and/or MCP-1 by A549 and Calu-6 cells, and these effects were mainly mediated by IL-1 (in A549 cells) or TNF-α (in Calu-6 cells). Conversely, culture supernatants from Brucella-infected bronchial epithelial cells induced MCP-1 production by monocytes, an effect largely mediated by GM-CSF. This study shows that human lung epithelial cells mount a proinflammatory response to Brucella, either directly or after interaction with Brucella-infected monocytes.  相似文献   

15.
The adhesion of bacterial pathogens to host cells is an event that determines infection, and ultimately invasion and intracellular multiplication. Several evidences have recently shown that this rule is also truth for the intracellular pathogen Brucella. Brucella suis displays the unipolar BmaC and BtaE adhesins, which belong to the monomeric and trimeric autotransporter (TA) families, respectively. It was previously shown that these adhesins are involved in bacterial adhesion to host cells and components of the extracellular matrix (ECM). In this work we describe the role of a new member of the TA family of B. suis (named BtaF) in the adhesive properties of the bacterial surface. BtaF conferred the bacteria that carried it a promiscuous adhesiveness to various ECM components and the ability to attach to an abiotic surface. Furthermore, BtaF was found to participate in bacterial adhesion to epithelial cells and was required for full virulence in mice. Similar to BmaC and BtaE, the BtaF adhesin was expressed in a small subpopulation of bacteria, and in all cases, it was detected at the new pole generated after cell division. Interestingly, BtaF was also implicated in the resistance of B. suis to porcine serum. Our findings emphasize the impact of TAs in the Brucella lifecycle.  相似文献   

16.
A pleomorphic Gram-negative, motile coccobacillus was isolated from the gills of a wild-caught bluespotted ribbontail ray after its sudden death during quarantine. Strain 141012304 was observed to grow aerobically, to be clearly positive for cytochrome oxidase, catalase, urease and was initially identified as “Brucella melitensis” or “Ochrobactrum anthropi” by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and VITEK2-compact®, respectively. Affiliation to the genus Brucella was confirmed by bcsp31 and IS711 PCR as well as by Brucella species-specific multiplex PCR, therein displaying a characteristic banding pattern recently described for Brucella strains obtained from amphibian hosts. Likewise, based on recA sequencing, strain 141012304 was found to form a separate lineage, within the so called ‘atypical’ Brucella, consisting of genetically more distantly related strains. The closest similarity was detected to brucellae, which have recently been isolated from edible bull frogs. Subsequent next generation genome sequencing and phylogenetic analysis confirmed that the ray strain represents a novel Brucella lineage within the atypical group of Brucella and in vicinity to Brucella inopinata and Brucella strain BO2, both isolated from human patients. This is the first report of a natural Brucella infection in a saltwater fish extending the host range of this medically important genus.  相似文献   

17.
Brucella are facultative intracellular Gram-negative coccobacilli that chronically infect humans as well as domestic and wild-type mammals, and cause brucellosis. Alternatively activated macrophages (M2a) induced by IL-4/IL-13 via STAT6 signaling pathways have been frequently described as a favorable niche for long-term persistence of intracellular pathogens. Based on the observation that M2a-like macrophages are induced in the spleen during the chronic phase of B. abortus infection in mice and are strongly infected in vitro, it has been suggested that M2a macrophages could be a potential in vivo niche for Brucella. In order to test this hypothesis, we used a model in which infected cells can be observed directly in situ and where the differentiation of M2a macrophages is favored by the absence of an IL-12-dependent Th1 response. We performed an in situ analysis by fluorescent microscopy of the phenotype of B. melitensis infected spleen cells from intranasally infected IL-12p40-/- BALB/c mice and the impact of STAT6 deficiency on this phenotype. Most of the infected spleen cells contained high levels of lipids and expressed CD11c and CD205 dendritic cell markers and Arginase1, but were negative for the M2a markers Fizz1 or CD301. Furthermore, STAT6 deficiency had no effect on bacterial growth or the reservoir cell phenotype in vivo, leading us to conclude that, in our model, the infected cells were not Th2-induced M2a macrophages. This characterization of B. melitensis reservoir cells could provide a better understanding of Brucella persistence in the host and lead to the design of more efficient therapeutic strategies.  相似文献   

18.
入侵相关基因(invasion-associated locus B, ialB)的同源基因在布鲁氏菌所属的根瘤菌目中是广泛保守的,但其在布鲁氏菌中的功能研究几乎为空白。根据有限的报道资料,猜测ialB的功能可能与布鲁氏菌入侵细胞以及适应胞内环境胁迫有关。【目的】探究ialB在布鲁氏菌中的生物学功能,揭示其在布鲁氏菌黏附和入侵细胞以及胞内存活中的作用。【方法】以猪种布鲁氏菌S2株为亲本,运用同源重组的方法构建布鲁氏菌ialB缺失株ΔialB,并通过表达质粒转化的方法构建其回补株CΔialB,比较3种菌株的生长特性、对体外应激的敏感性;通过扫描电镜观察ialB缺失对布鲁氏菌形态的影响,通过实时荧光定量PCR检测3种菌株极性延长相关基因的表达;通过免疫荧光和平板计数的方法分析ialB缺失对布鲁氏菌黏附、入侵RAW264.7细胞以及胞内存活的影响。【结果】成功构建了菌株ΔialB和CΔialB;ΔialB与布鲁氏菌S2株相比,生长受限,活力降低,在酸应激、高渗应激、低渗应激、多黏菌素B应激条件下存活率降低,在氧化应激条件下存活率上升;而且,ΔialB的菌体形态发生改变,菌体变短,直径增加,极...  相似文献   

19.
We report on the characterization of a group of seven novel Brucella strains isolated in 1964 from three native rodent species in North Queensland, Australia, during a survey of wild animals. The strains were initially reported to be Brucella suis biovar 3 on the basis of microbiological test results. Our results indicated that the rodent strains had microbiological traits distinct from those of B. suis biovar 3 and all other Brucella spp. To reinvestigate these rodent strains, we sequenced the 16S rRNA, recA, and rpoB genes and nine housekeeping genes and also performed multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA). The rodent strains have a unique 16S rRNA gene sequence compared to the sequences of the classical Brucella spp. Sequence analysis of the recA, rpoB, and nine housekeeping genes reveals that the rodent strains are genetically identical to each other at these loci and divergent from any of the currently described Brucella sequence types. However, all seven of the rodent strains do exhibit distinctive allelic MLVA profiles, although none demonstrated an amplicon for VNTR 07, whereas the other Brucella spp. did. Phylogenetic analysis of the MLVA data reveals that the rodent strains form a distinct clade separate from the classical Brucella spp. Furthermore, whole-genome sequence comparison using the maximal unique exact matches index (MUMi) demonstrated a high degree of relatedness of one of the seven rodent Brucella strains (strain NF 2653) to another Australian rodent Brucella strain (strain 83-13). Our findings strongly suggest that this group of Brucella strains isolated from wild Australian rodents defines a new species in the Brucella genus.Brucella species are facultative intracellular Gram-negative members of the Alphaproteobacteria class capable of causing brucellosis in a range of animal hosts, including domesticated livestock, wildlife, marine mammals, and humans (1, 5, 7, 29, 32, 33, 36, 47). Brucellosis is the most prevalent zoonotic disease worldwide, causing spontaneous abortion and fetal death in animals and severe flu-like symptoms, focal complications, and often, chronic disease in humans (7, 11, 22, 27, 40, 41, 49, 50). Brucella species are typically transmitted to humans through consumption of unpasteurized dairy products or exposure to fluids or tissues from infected animals (45, 49). Animals are primary hosts of all Brucella spp., which include Brucella abortus (cattle), B. canis (dogs), B. melitensis (goats, cows, and sheep), B. suis (swine), B. ovis (rams), and B. neotomae (desert rats) (3, 7, 8). Recently, three additional Brucella species have been recognized: B. pinnipedialis (seals), B. ceti (dolphins) (5), and B. microti. B. microti was initially isolated from the common vole in the Czech Republic (33, 35). In the mid-1980s, DNA-DNA hybridization studies demonstrated a very high level of genetic similarity (98.5%) among the Brucella spp., which led to the adoption of a monospecies concept for the Brucella genus, with all the species at that time renamed as biovars of B. melitensis (46). However, 20 years later, the use of a phylogenetic-evolutionary approach to Brucella taxonomy was accepted. By that approach, host preferences, virulence, and pathogenicity were considered important criteria in the delineation of Brucella species, and consequently, the multispecies taxonomy was restored to the Brucella genus (28). With the development of more advanced molecular typing methodologies such as multilocus sequence analysis (MLSA) (48), multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) (23), and techniques interrogating single nucleotide polymorphisms (SNPs) (17, 47), Brucella spp. can be quickly genotyped and strains can be readily examined for their phylogenetic and evolutionary relationships (15).Recently, we reported on two unusual human brucellosis cases, one of which led to the identification of a novel species, Brucella inopinata, whose type strain is strain BO1 and which was associated with a breast implant infection in a patient in Oregon (12, 36). The second brucellosis case involved an atypical Brucella strain (strain BO2) isolated from the lung biopsy fluid of a patient with chronic destructive pneumonia in Australia (44). Because both patients denied common risk factors associated with human brucellosis, the primary hosts of these strains remain unknown. However, nucleotide sequence analysis of the outer membrane proteins (omp2a and omp2b) of both strain BO2 and strain BO1T demonstrated close clustering to an atypical B. suis strain (strain 83-210) isolated from a rodent in Australia (30, 44). Further genetic analysis of the 16S rRNA genes from strains BO1T and BO2 and the 16S rRNA gene from atypical Brucella strain 83-13 (available at http://www.broadinstitute.org), which was isolated from a rodent in Australia and briefly described by Corbel and Brinley-Morgan in 1984 (9), showed that strain 83-13 yielded notable genetic similarity to the novel human isolates, which led us to speculate that atypical human Brucella strains BO1T and BO2 may have an animal reservoir in rodents from Australia.Rodent brucellosis is self-limiting and is mostly associated with wild rodents that cohabitate among domestic livestock presumably infected with classical Brucella spp. (27). Over 22 different wild rodent species worldwide have been reported to be susceptible to Brucella infection, as demonstrated by serology and/or culture (41). Earlier field studies in Argentina, Venezuela, and Denmark reported on the prevalence of B. suis in hares, opossums, and rats and B. abortus in ferrets and capybaras (10, 11, 27). However, two rodent-specific Brucella spp. have been identified, including B. neotomae, isolated from the desert wood rat (Neotomae lepida) in Utah (39), and most recently, B. microti, isolated from the common vole (Microtus arvalis) in the Czech Republic (35). In the early 1960s, Cook et al. reported on the isolation and biochemical identification of seven Brucella suis biovar 3 strains from three known species of wild native rats from Australia (6). We reinvestigated the microbiological characteristics of these seven rodent B. suis biovar 3 strains and performed genetic analyses with respect to the microbiological characteristics and genetics of the classical and atypical Brucella species. In this report, we describe this group of Brucella strains isolated from wild rodents in Australia, which confer unique microbiological and molecular characteristics distinct from those of any of the currently described species.  相似文献   

20.
Brucella, a causative agent of brucellosis, has been isolated recently from a variety of marine mammals. The molecular analysis of marine mammalian Brucella strains, without manifest pathology of brucellosis in the eastern North Atlantic, showed that they are distinct from terrestrial Brucella species. Previously, we reported abnormal gonads in common minke whales (Balaenoptera acutorostrata) in the western North Pacific and suggested the presence of Brucella infection in the whales in pathology and serology studies. In the present study, using polymerase chain reaction (PCR), Brucella was detected in granular testes of the whales showing caseation or calcification. The insertion of an IS711 transposable element specific for marine mammal isolates as well as a seal isolate-specific DNA fragment were also found. Molecular characterization of Brucella based on sequence analysis of the PCR products amplified from the outer membrane protein (omp) 2 gene showed that the Brucella from North Pacific common minke whales was different from terrestrial and North Atlantic marine mammal Brucella strains. The North Pacific Brucella showed the highest similarity to North Atlantic seal strains among the known Brucella strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号