首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
In the absence of repair, lesions accumulate in DNA. Thus, DNA persisting in specimens of paleontological, archaeological or forensic interest is inevitably damaged. We describe a strategy for the recovery of genetic information from damaged DNA. By molecular breeding of polymerase genes from the genus Thermus (Taq (Thermus aquaticus), Tth (Thermus thermophilus) and Tfl (Thermus flavus)) and compartmentalized self-replication selection, we have evolved polymerases that can extend single, double and even quadruple mismatches, process non-canonical primer-template duplexes and bypass lesions found in ancient DNA, such as hydantoins and abasic sites. Applied to the PCR amplification of 47,000-60,000-year-old cave bear DNA, these outperformed Taq DNA polymerase by up to 150% and yielded amplification products at sample dilutions at which Taq did not. Our results demonstrate that engineered polymerases can expand the recovery of genetic information from Pleistocene specimens and may benefit genetic analysis in paleontology, archeology and forensic medicine.  相似文献   

5.
6.
7.
8.
9.
10.
DNA polymerase from Thermus aquaticus has become a common reagent in molecular biology because of its utility in DNA amplification and DNA sequencing protocols. A simplified method is described here for isolating the recombinant Taq enzyme after overproduction in Escherichia coli. Purification requires 8 to 10 h and entails heat treating and clearing the E. coli lysate, followed by precipitation of the enzyme with polyethyleneimine and elution from Bio Rex 70 ion exchange resin in a single salt step. The resulting enzyme preparation contains a single, nearly homogeneous protein consistent with the previously established size of the Taq DNA polymerase in a yield of 40-50 mg of protein per liter of cell culture.  相似文献   

11.
12.
DNA polymerases contain active sites that are structurally superimposable and conserved in amino acid sequence. To probe the biochemical and structure-function relationship of DNA polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (Motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 out of 8000) was tested for base pairing fidelity; seven unique mutants that efficiently misincorporate bases and/or extend mismatched bases were identified and sequenced. These mutants all contain substitutions of one specific amino acid, Ile-614, which forms part of the hydrophobic pocket that binds the base and ribose portions of the incoming nucleotide. Mutant Taq pol Is containing hydrophilic substitution I614K exhibit 10-fold lower base misincorporation fidelity, as well as a high propensity to extend mispairs. In addition, these low fidelity mutants containing hydrophilic substitution for Ile-614 can bypass damaged templates that include an abasic site and vinyl chloride adduct ethenoA. During polymerase chain reaction, Taq pol I mutant I614K exhibits an error rate that is >20-fold higher relative to the wild-type enzyme and efficiently catalyzes both transition and transversion errors. These studies have generated polymerase chain reaction-proficient mutant polymerases containing substitutions within the active site that confers low base pairing fidelity and a high error rate. Considering the structural and sequence conservation of Motif A, it is likely that a similar substitution will yield active low fidelity DNA polymerases that are mutagenic.  相似文献   

13.
Novel thymidine analogue triphosphates, which have an sp3-hybridized carbon at the C5 alpha-position with amino-linker arms, a methyl ester, or a carboxyl group at the C5 sidearm, were good substrates for primer-extension reactions by DNA polymerase from Pyrococcus kodakaraensis (KOD Dash DNA polymerase), yielding exclusively full-length products. The resulting modified DNA was further allowed to react with a functional molecule such as fluorescein isothiocyanate. By contrast, only truncated products were formed from the thymidine analogue substrate bearing the amino-linker arm or the negatively charged carboxyl group using Taq, Tth DNA polymerase, or DNA polymerase I from E. coli (Klenow fragment). The results indicate either that the thymidine analogue was not accepted by the enzymes, or that the polymerases could not extend the products, once the analogue had been incorporated, depending on the type of the analogue. A conventional thymidine analogue bearing an aminopropenyl group at the C5-position was accepted by all enzymes, among which KOD Dash DNA polymerase showed the highest activity for the polymerization with this analogue. Templates bearing the thymidine analogues in place of one thymidine residue were read by KOD Dash, Taq, Tth DNA polymerases, and the Klenow fragment giving the full-length product. KOD Dash DNA polymerase could expand structural diversities of substrates that can be used to prepare modified DNAs.  相似文献   

14.
The gene coding for 3-isopropylmalate dehydrogenase of Thermus thermophilus was cloned and expressed in Escherichia coli. The extracted enzyme was crystallized in a suitable size for X-ray crystallographic studies. The crystals have a space group of P3(1)21 or P3(2)21 with a = b = 78.6 A and c = 157.4 A.  相似文献   

15.
A second site specific endonuclease with a novel specificity has been isolated from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for activity. Tth111II cleaves phi X174RFDNA into 11 fragments. From the analysis of 5' terminal sequences of the phi X174RFDNA fragments produced by Tth111II action, it was concluded that Tth111II recognized the DNA sequence (See formula in text) and cleaved the sites as indicated by arrows.  相似文献   

16.
Error-free protein biosynthesis is dependent on the reliable charging of each tRNA with its cognate amino acid. Many bacteria, however, lack a glutaminyl-tRNA synthetase. In these organisms, tRNA(Gln) is initially mischarged with glutamate by a non-discriminating glutamyl-tRNA synthetase (ND-GluRS). This enzyme thus charges both tRNA(Glu) and tRNA(Gln) with glutamate. Discriminating GluRS (D-GluRS), found in some bacteria and all eukaryotes, exclusively generates Glu-tRNA(Glu). Here we present the first crystal structure of a non-discriminating GluRS from Thermosynechococcus elongatus (ND-GluRS(Tel)) in complex with glutamate at a resolution of 2.45 A. Structurally, the enzyme shares the overall architecture of the discriminating GluRS from Thermus thermophilus (D-GluRS(Tth)). We confirm experimentally that GluRS(Tel) is non-discriminating and present kinetic parameters for synthesis of Glu-tRNA(Glu) and of Glu-tRNA(Gln). Anticodons of tRNA(Glu) (34C/UUC36) and tRNA(Gln) (34C/UUG36) differ only in base 36. The pyrimidine base of C36 is specifically recognized in D-GluRS(Tth) by the residue Arg358. In ND-GluRS(Tel) this arginine residue is replaced by glycine (Gly366) presumably allowing both cytosine and the bulkier purine base G36 of tRNA(Gln) to be tolerated. Most other ND-GluRS share this structural feature, leading to relaxed substrate specificity.  相似文献   

17.
DNA and RNA polymerase exhibit similarities in structures and catalytic mechanisms, suggesting that both classes of enzymes are evolutionarily related. To probe the biochemical and structure-function relationship between the two classes of polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 of 8000) was tested for the ability to incorporate successive ribonucleotides; 23 unique mutants that added rNTPs into a growing polynucleotide chain were identified and sequenced. These mutants, each containing one to four substitutions, incorporate ribonucleotides at a efficiency approaching 10(3)-fold greater than that of wild type Taq pol I. Several mutants added successive ribonucleotides and thus can catalyze the synthesis of RNA. Sequence analysis of these mutants demonstrates that at least two amino acid residues are involved in excluding ribonucleotides from the active site. Interestingly, wild type DNA polymerases from several distinct families selectively discriminate against rUTP. This study suggests that current DNA and RNA polymerases could have evolved by divergent evolution from an ancestor that shared a common mechanism for polynucleotide synthesis.  相似文献   

18.
Improving the fidelity of Thermus thermophilus DNA ligase.   总被引:4,自引:0,他引:4       下载免费PDF全文
J Luo  D E Bergstrom    F Barany 《Nucleic acids research》1996,24(15):3071-3078
The DNA ligase from Thermus thermophilus (Tth DNA ligase) seals single-strand breaks (nicks) in DNA duplex substrates. The specificity and thermostability of this enzyme are exploited in the ligase chain reaction (LCR) and ligase detection reaction (LDR) to distinguish single base mutations associated with genetic diseases. Herein, we describe a quantitative assay using fluorescently labeled substrates to study the fidelity of Tth DNA ligase. The enzyme exhibits significantly greater discrimination against all single base mismatches on the 3'-side of the nick in comparison with those on the 5'-side of the nick. Among all 12 possible single base pair mismatches on the 3'-side of the nick, only T-G and G-T mismatches generated a quantifiable level of ligation products after 23 h incubation. The high fidelity of Tth DNA ligase can be improved further by introducing a mismatched base or a universal nucleoside analog at the third position of the discriminating oligonucleotide. Finally, two mutant Tth DNA ligases, K294R and K294P, were found to have increased fidelity using this assay.  相似文献   

19.
A thermostable DNA polymerase, isolated from the thermophilic strain Thermus thermophilus HB 8 was purified by a five-step procedure which provides a high yield and a homogeneous preparation. The molecular weight was estimated to be 67,000 daltons and the extension rate was determined to be 1500 nucleotides per minute. The enzyme works in polymerase chain reaction conditions similar to those used for Taq polymerase from Thermus aquaticus.  相似文献   

20.
A second site specific endonuclease with novel specificity has been purified from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for endonuclease activity. Tth111II cleaves phi X174RFDNA into 11 fragments and lambda NA into more than 25 fragments. From the 5'-terminal sequences of TthlllII fragments of phi X174RFDNA determined by the two dimensional homochromatography and the survey on nucleotide sequence of phi X174RFDNA, it was concluded that Tth111II recognizes the DNA sequence (see former index) and cleaves the sites as indicated by the arrows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号