首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The areas of seagrass meadows in Cockburn Sound, a marine embayment in Western Australia, were estimated from historical aerial photographs supplemented by ground surveys, studies on meadows in adjoining areas, and coring for rhizome remains. Ten species of seagrasses with different habitat tolerances are recorded for the area, with Posidonia sinuosa Cambridge et Kuo forming the most extensive meadows. It is estimated that from 1954 to 1978 the meadow area was reduced from some 4200 to 900 ha. Based on measurements of aboveground productivity at several sites, this represents a reduction of leaf detritus production from 23 000 to 4000 t (dry wt.) y−1. The major loss of seagrass occurred during a period of industrial development on the shore, and the discharge of effluents rich in plant nutrients.  相似文献   

2.
3.
Relationships between algal epiphytes and epifaunal invertebrates (amphipods, molluscs and polychaetes) occurring within meadows of the seagrasses Posidonia sinuosa and Amphibolis griffithii were compared along the south west coast of Western Australia. Although the seagrasses are very different structurally, many species of algal epiphytes and epifaunal grazers were common to both. However, meadows of Amphibolis supported a greater number of both algal epiphyte and epifaunal species. The long-lived stems of Amphibolis supported a larger biomass of algal epiphytes and grazers than did the leaves of either Posidonia or Amphibolis. The densities and biomass of epifauna were variable but on a comparison adjusted to the biomass of seagrass, both the density and biomass of the taxonomic groups were similar between seagrass species except that the density of grazing gastropods and the biomass of polychaetes were greater in Amphibolis (by 238% and 252%, respectively). Nested analyses of variance (ANOVA) indicated that variations in plant and animal biomass differed at all spatial scales (sites, meadows within sites and replicates) and the pattern was inconsistent amongst biota. However, a significant proportion of the variability occurred between replicate samples. Canonical correlation and multiple regression analyses indicated that associations between algal epiphytes and epifauna were also inconsistent and differed between seagrass species. These patterns highlight the importance of seagrass species and structural complexity in affecting both the epiphytic and grazer community. The importance of spatial scales at which seagrasses and their associated communities are sampled are equally important because of the differing levels of spatial patchiness.  相似文献   

4.
Global seagrass distribution and diversity: A bioregional model   总被引:5,自引:0,他引:5  
Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (< 60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica. The Temperate Southern Oceans bioregion includes the temperate southern coastlines of Australia, Africa and South America. Extensive meadows of low-to-high diversity temperate seagrasses are found in this bioregion, dominated by various species of Posidonia and Zostera. The tropical bioregions are the Tropical Atlantic and the Tropical Indo-Pacific, both supporting mega-herbivore grazers, including sea turtles and sirenia. The Tropical Atlantic bioregion has clear water with a high diversity of seagrasses on reefs and shallow banks, dominated by Thalassia testudinum. The vast Tropical Indo-Pacific has the highest seagrass diversity in the world, with as many as 14 species growing together on reef flats although seagrasses also occur in very deep waters. The global distribution of seagrass genera is remarkably consistent north and south of the equator; the northern and southern hemispheres share ten seagrass genera and only have one unique genus each. Some genera are much more speciose than others, with the genus Halophila having the most seagrass species. There are roughly the same number of temperate and tropical seagrass genera as well as species. The most widely distributed seagrass is Ruppia maritima, which occurs in tropical and temperate zones in a wide variety of habitats. Seagrass bioregions at the scale of ocean basins are identified based on species distributions which are supported by genetic patterns of diversity. Seagrass bioregions provide a useful framework for interpreting ecological, physiological and genetic results collected in specific locations or from particular species.  相似文献   

5.
The diets of five species of Labridae in south-western Australia were examined to determine whether: (1) grazing of seagrass and epiphytic algae is a prominent feature of the food web within the deeper seagrass meadows of this temperate region; (2) levels of grazing differ among different seagrass systems; and diets differ among these closely-related species. Fish were collected seasonally from three seagrass habitats mainly comprising either Posidonia sinuosa, Posidonia coriacea or Amphibolis griffithii between the summer of 1996/97 and spring of 1997. Consumption of considerable amounts of algae and seagrass by Odax acroptilus and seagrass by Haletta semifasciata indicates that macrophyte grazing by fish is a component of the trophic dynamics of south-western Australian seagrass meadows. O. acroptilus and H. semifasciata were both omnivorous, feeding on a range of epifauna, infauna and flora, whereas Siphonognathus radiatus, Neoodax balteatus and Notolabrus parilus were carnivorous, feeding predominantly on motile epifauna, such as molluscs and crustaceans. The level of macrophyte grazing is likely to be underestimated in temperate offshore meadows of P. sinuosa and A. griffithii where omnivorous labrids, monacanthids and terapontids are abundant. Stable isotope data for O. acroptilus from the study region suggest that animal prey is more important to tissue maintenance than macrophyte material. Macrophytes may be grazed to acquire attached animal prey or for fulfilling energy requirements. Based on the distribution of prey, it appears that species in A. griffithii meadows forage within and below the seagrass canopy, whilst species in P. sinuosa meadows are likely to forage towards the basal area of this seagrass.  相似文献   

6.
Genetic diversity is one of three forms of biodiversity recognized by the IUCN as deserving conservation along with species and ecosystems. Seagrasses provide all three levels in one. This review addresses the latest advances in our understanding of seagrass population genetics and genomics within the wider context of ecology and conservation. Case studies are used from the most widely studied, northern hemisphere species Zostera marina, Z. noltii, Posidonia oceanica and Cymodocea nodosa.

We begin with an analysis of the factors that have shaped population structure across a range of spatial and temporal scales including basin-level phylogeography, landscape-scale connectivity studies, and finally, local-scale analyses at the meadow level—including the effects of diversity, clonality and mating system. Genetic diversity and clonal architecture of seagrass meadows differ within and among species at virtually all scales studied. Recent experimental studies that have manipulated seagrass genetic biodiversity indicate that genotypic diversity matters in an immediate ecological context, and enhances population growth, resistance and resilience to perturbation, with positive effects on abundance and diversity of the larger community. In terms of the longer term, evolutionary consequences of genetic/genotypic diversity in seagrass beds, our knowledge remains meagre. It is here that the new tools of ecogenomics will assist in unravelling the genetic basis for adaptation to both biotic and abiotic change. Gene expression studies will further assist in the assessment of physiological performance which may provide an early warning system under complex disturbance regimes that seagrasses are at or near their tolerance thresholds.

At the most fundamental level, ecological interactions of seagrasses with their environment depends on the genetic architecture and response diversity underlying critical traits. Hence, given the rapid progress in data acquisition and analysis, we predict an increasing role of genetic and genomic tools for seagrass ecology and conservation.  相似文献   


7.
In this study the occurrence of twin-like embryos and abnormal embryos in Posidonia oceanica, a rare phenomenon in seagrasses, was documented. The ability of additional embryos to develop seedlings was also demonstrated for the first time in seagrasses. Approximately 1750 fruits collected at three localities of the north-western Mediterranean on 2 years (1994 and 2004) were screened for abnormal embryo morphology. The frequency of embryo anomalies varied from 1.9 to 7.1% among localities, and no differences between years were detected within the same locality. Twin-like embryos were usually in contact and germinated to produce complete twin seedlings that could be separated. Abnormal embryos showed additional plumules but had a common hypocotyl and a single primary root; these embryos germinated and grew like “Siamese” seedlings.  相似文献   

8.
Few studies have considered how seagrass fish assemblages are influenced by surrounding habitats. This information is needed for a better understanding of the connectivity between tropical coastal ecosystems. To study the effects of surrounding habitats on the composition, diversity and densities of coral reef fish species on seagrass beds, underwater visual census surveys were carried out in two seagrass habitat types at various locations along the coast of Zanzibar (Tanzania) in the western Indian Ocean. Fish assemblages of seagrass beds in a marine embayment with large areas of mangroves (bay seagrasses) situated 9 km away from coral reefs were compared with those of seagrass beds situated on the continental shelf adjacent to coral reefs (reef seagrasses). No differences in total fish density, total species richness or total juvenile fish density and species richness were observed between the two seagrass habitat types. However, at species level, nine species showed significantly higher densities in bay seagrasses, while eight other species showed significantly higher densities in reef seagrasses. Another four species were exclusively observed in bay seagrasses. Since seagrass complexity could not be related to these differences, it is suggested that the arrangement of seagrass beds in the surrounding landscape (i.e. the arrangement on the continental shelf adjacent to the coral reef, or the arrangement in an embayment with mangroves situated away from reefs) has a possible effect on the occurrence of various reef-associated fish species on seagrass beds. Fish migration from or to the seagrass beds and recruitment and settlement patterns of larvae possibly explain these observations. Juvenile fish densities were similar in the two types of seagrass habitats indicating that seagrass beds adjacent to coral reefs also function as important juvenile habitats, even though they may be subject to higher levels of predation. On the contrary, the density and species richness of adult fish was significantly higher on reef seagrasses than on bay seagrasses, indicating that proximity to the coral reef increases density of adult fish on reef seagrasses, and/or that ontogenetic shifts to the reef may reduce adult density on bay seagrasses.  相似文献   

9.
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1–4 h) exposures of thermal stress (35–45 °C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm′. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm′ represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 °C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm′ qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 °C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40–45 °C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Niño event.  相似文献   

10.
We show in laboratory and field investigations that in the short‐term seagrasses obtain most of their required nitrogen from the degradation of seagrass leaves, rather than degradation of leaves exported from adjacent mangroves. Mangrove forests at our Thailand site retain the majority of their nutrients, and therefore potentially buffer seagrasses from nutrients.  相似文献   

11.
Previous studies have shown that most leaf production (>90%) of the seagrass Posidonia oceanica is shed after senescence and that a substantial percentage (up to 80%) may thereafter be exported off the seagrass meadows by waves and currents. It has also been reported that P. oceanica meadows can accumulate large stocks of belowground detritus due to slow decomposition rates. However, the generality of these results across broad spatial scales is poorly known. In this report, we examine the fate of leaf production and the magnitude and dynamics of belowground detritus in 16 P. oceanica meadows distributed along the Spanish Mediterranean. Herbivores removed a small percentage of leaf production in all the meadows (≤13%), with most leaf production (>85%) being shed after senescence. Most shed leaves (>90%) were exported off the meadows by physical agents, such as waves and currents. The amount of belowground detritus stored within 10–15 cm from the sediment surface varied from ca. 70 to 7500 g DW m−2 among the meadows examined, and they accumulated at rates ranging from ca. 65 to 650 g DW m−2 per year. These values are large when compared to other communities of aquatic and terrestrial macrophytes. Our results show that P. oceanica meadows in the Spanish Mediterranean support high values of secondary production in other systems by exporting large amounts of leaf detritus as well as acting as substantial carbon sinks by accumulating large reservoirs of belowground detritus. Therefore, the increasing anthropogenic threats on P. oceanica could entail an important loss of secondary production and carbon storage in Mediterranean coastal ecosystems.  相似文献   

12.
Seagrass depth limits   总被引:29,自引:0,他引:29  
Examination of the depth limit of seagrass communities distributed worldwide showed that sea-grasses may extend from mean sea level down to a depth of 90 m, and that differences in seagrass depth limit (Zc) are largely attributable to differences in light attenuation underwater (K). This relationship is best described by the equation
log Zc (m) = 0.26 − 1.07 log K (m)
that holds for a large number of marine angiosperm species, although differences in seagrass growth strategy and architecture also appear to contribute to explain differences in their depth limits. The equation relating seagrass depth limit and light attenuation coefficient is qualitatively similar to previous equations developed for freshwater angiosperms, but predicts that seagrasses will colonize greater depths than freshwater angiosperms in clear (transparency greater than 10 m) waters. Further, the reduction in seagrass biomass from the depth of maximum biomass towards the depth limit is also closely related to the light attenuation coefficient. The finding that seagrasses can extend to depths receiving, on average, about 11% of the irradiance at the surface, together with the use of the equation described, may prove useful in the identification of seagrass meadows that have not reached their potential extension.  相似文献   

13.
Seagrass environments, from the main coast of India, Lakshadweep and Andaman Islands, were surveyed for seagrass and marine algal composition. Extensive seagrass meadows and the maximum number of species (seven genera and 12 species) occurred along the Tamil Nadu coast. Seagrasses were observed from intertidal to subtidal regions down to 8 m depth. Thalassia hemprichii (Ehrenberg) Aschers. and Cymodocea serrulata (R. Brown) Aschers. & Magnus were the dominant seagrasses in the subtidal zones. Halophila beccarii Aschers. was restricted to the intertidal mudflats in association with mangroves. The rich growth of seagrasses along the Tamil Nadu coast and Lakshadweep can be attributed mainly to high salinity, clarity of the water and sandy substratum. One hundred species of marine algae were recorded from the seagrass environments of India.  相似文献   

14.
The dynamics of the seagrass-sulfide interaction were examined in relation to diel changes in sediment pore water sulfide concentrations in Thalassia testudinum beds and adjacent bare areas in Corpus Christi Bay and lower Laguna Madre, Texas, USA, during July 1996. Pore water sulfide concentrations in seagrass beds were significantly higher than in adjacent bare areas and showed strong diurnal variations; levels significantly decreased during mid-day at shallow sediment depths (0-10 cm) containing high below-ground tissue biomass and surface area. In contrast, diurnal variations in sediment sulfide concentrations were absent in adjacent bare patches, and at deeper (>10 cm) sediment depths characterized by low below-ground plant biomass or when the grasses were experimentally shaded. These observations suggest that the mid-day depressions in sulfide levels are linked to the transport of photosynthetically produced oxygen to seagrass below-ground tissues that fuels sediment sulfide oxidation. Lower sulfide concentrations in bare areas are likely a result of low sulfate reduction rates due to low organic matter available for remineralization. Further, high reoxidation rates due to rapid exchange between anoxic pore water and oxic overlying water are probably stimulated in bare areas by higher current velocity on the sediment surface than in seagrass beds. The dynamics of pore water sulfides in seagrass beds suggest no toxic sulfide intrusion into below-ground tissues during photosynthetic periods and demonstrate that the sediment chemical environment is considerably modified by seagrasses. The reduced sediment sulfide levels in seagrass beds during photosynthetic periods will enhance seagrass production through reduced sulfide toxicity to seagrasses and sediment microorganisms related to the nutrient cycling.  相似文献   

15.
The analysis of the temporal changes in shoot density, areal leaf biomass, leaf growth and parameters of the photosynthesis–irradiance relationship of three tropical seagrass species (Enhalus acoroides, Thalassia hemprichii and Cymodocea rotundata), co-existing in a shallow subtidal meadow in Cape Bolinao, Philippines, shows that species-specific traits are significant sources of temporal variability, and indicates that these seagrass species respond differently to a common environmental forcing. Species-specific differences are much less important as source of variability of the temporal change in chlorophyll concentration of seagrass leaves. The results indicate that the temporal changes in photosynthetic performance of these seagrasses were driven by environmental forcing and their specific responses to it mostly, but the temporal change in their abundance and leaf growth was also controlled by other factors. The significant contribution of species-specific factors in the temporal changes of biomass, growth and photosynthetic performance of co-occurring seagrass species in Cape Bolinao should contribute to the maintenance of the multispecific, highly productive meadows characteristic of pristine coastal ecosystems in Southeast (SE) Asia.  相似文献   

16.
This study focused on the ingestion and assimilation of Posidonia oceanica (L.) Delile litter by Gammarella fucicola Leach and Gammarus aequicauda Martynov, two dominant detritivore amphipods of the P. oceanica leaf litter. Scanning electron microscope observations indicated that leaf litter is highly colonized by diverse diatoms, bacteria and fungi, which may constitute a potential food source for the litter fauna. Gut content observations demonstrated that these species eat P. oceanica litter, and that this item is an important part of their ingested diet. Stable isotope analyses showed that the species do not experience the same gains from the ingested Posidonia. Gammarella fucicola displayed isotopic values, suggesting a major contribution of algal material (micro- and macro-epiphytes or drift macro-algae). On the other hand, the observed isotopic values of G. aequicauda indicated a more important contribution of P. oceanica carbon. The mixing model used agreed with this view, with a mean contribution of P. oceanica to approximately 50% (range 40-55%) of the assimilated biomass of G. aequicauda. This demonstrated that the two species, suspected to be detritus feeders, display in reality relatively different diets, showing that a certain degree of trophic diversity may exist among the detritivore community of the seagrass litter.  相似文献   

17.
18.
Productivity of seagrasses can be controlled by physiological processes, as well as various biotic and abiotic factors that influence plant metabolism. Light, temperature, and inorganic nutrients affect biochemical processes of organisms, and are considered as major factors controlling seagrass growth. Minimum light requirements for seagrass growth vary among species due to unique physiological and morphological adaptations of each species, and within species due to photo-acclimation to local light regimes. Seagrasses can enhance light harvesting efficiencies through photo-acclimation during low light conditions, and thus plants growing near their depth limit may have higher photosynthetic efficiencies. Annual temperatures, which are highly predictable in aquatic systems, play an important role in controlling site specific seasonal seagrass growth. Furthermore, both thermal adaptation and thermal tolerance contribute greatly to seagrass global distributions. The optimal growth temperature for temperate species range between 11.5 °C and 26 °C, whereas the optimal growth temperature for tropical/subtropical species is between 23 °C and 32 °C. However, productivity in persistent seagrasses is likely controlled by nutrient availability, including both water column and sediment nutrients. It has been demonstrated that seagrasses can assimilate nutrients through both leaf and root tissues, often with equal uptake contributions from water column and sediment nutrients. Seagrasses use HCO3 inefficiently as a carbon source, thus photosynthesis is not always saturated with respect to DIC at natural seawater concentrations leading to carbon limitation for seagrass growth. Our understanding of growth dynamics in seagrasses, as it relates to main environmental factors such as light, temperature, and nutrient availability, is critical for effective conservation and management of seagrass habitats.  相似文献   

19.
Many climate change models predict increasing frequency and severity of tropical cyclones (hurricanes) in the Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. To assess this potential threat to seagrass communities in Florida’s Big Bend region, we performed a habitat change analysis based on aerial seagrass surveys performed prior to, and after, the extremely active Atlantic cyclone seasons of 2004 and 2005. To provide a regional context for changes in the Big Bend region, we also compared impacts there with changes in three other West Florida estuaries. Our analysis showed that storm impacts on seagrasses varied along Florida’s west coast. Physical disturbance caused minor losses in parts of Charlotte Harbor and the Big Bend region. However, heavy rainfall in Florida and Georgia associated with Frances and Jeanne combined with winter rains to cause complete loss of 1,500 ha of seagrasses and thinning of another 1,700 ha in the vicinity of the Suwannee River mouth. In Tampa Bay, Sarasota Bay, and Charlotte Harbor, despite localized losses, total seagrass area actually increased between 2004 and 2006. On the other hand, Tampa Bay, Sarasota Bay, and Charlotte Harbor all showed significant, and more pronounced, declines in seagrass cover as the result of another major rainfall and runoff event: the 1997–1998 El Nino event. Our results indicate that light stress, likely caused by suspended sediments, phytoplankton blooms, and dissolved organic matter, resulted in seagrass losses extending up to 40 km from the mouth of the Suwannee River. We conclude that water quality impacts, especially if they are persistent, can be more damaging than physical impacts of moderate (Category 1–3) tropical cyclones. We also conclude that runoff-related impacts on seagrasses vary depending on the timing, volume, and persistence of storm runoff in relation to normal seasonal runoff patterns and seagrass growth in each estuary.  相似文献   

20.
The pattern of colonization by microorganisms on root surfaces from three species of seagrass belonging to the genus Posidonia was assessed. Microbial abundance on roots was measured by two electronic microscope techniques. Trends in microbial colonization between species and root order were defined. In addition, eutrophication status of the sampling sites and physiological status of Posidonia oceanica (L.) Delile roots have been taken into account. Our results show high microbial abundance in the Mediterranean species P. oceanica, in comparison with the low rates of colonization found in the Australian species P. australis Hook f. and P. sinuosa Cambridge et Kuo. Microbial density tended to decrease as root order increased, and living roots always showed higher microbial abundance than dead ones. Colonization of P. oceanica roots at the three sites with different environmental status follows different trends according to root order. It is suggested that root age influences the rate of microbial colonization of seagrass roots and that colonization of root surface by microorganisms is associated with organic exudates from the roots rather than with decaying root tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号