首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteases of the caspase family play key roles in the execution of apoptosis. In Drosophila there are seven caspases, but their roles in cell death have not been studied in detail due to a lack of availability of specific mutants. Here, we describe the generation of a specific mutant of the Drosophila gene encoding DRONC, the only caspase recruitment domain (CARD) containing apical caspase in the fly. dronc mutants are pupal lethal and our studies show that DRONC is required for many forms of developmental cell deaths and apoptosis induced by DNA damage. Furthermore, we demonstrate that DRONC is required for the autophagic death of larval salivary glands during metamorphosis, but not for histolysis of larval midguts. Our results indicate that DRONC is involved in specific developmental cell death pathways and that in some tissues, effector caspase activation and cell death can occur independently of DRONC.  相似文献   

2.
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has a principal role in growth control through both its cytostatic effect on many different epithelial cell types and its ability to induce programmed cell death in a variety of other cell types. Here we have used a screen for proteins that interact physically with the cytoplasmic domain of the type II TGF-beta receptor to isolate the gene encoding Daxx - a protein associated with the Fas receptor that mediates activation of Jun amino-terminal kinase (JNK) and programmed cell death induced by Fas. The carboxy-terminal portion of Daxx functions as a dominant-negative inhibitor of TGF-beta-induced apoptosis in B-cell lymphomas, and antisense oligonucleotides to Daxx inhibit TGF-beta-induced apoptosis in mouse hepatocytes. Furthermore, Daxx is involved in mediating JNK activation by TGF-beta. Our findings associate Daxx directly with the TGF-beta apoptotic-signalling pathway, and make a biochemical connection between the receptors for TGF-beta and the apoptotic machinery.  相似文献   

3.
Ultraviolet (UV) exerts its biological activities by activating downstream effectors, including NF-kappaB, JNK, and caspases. Activation of JNK is required for UV-induced apoptosis. It is unknown whether any crosstalk occurs between NF-kappaB and JNK in response to UV and, if so, how it affects UV killing. Here we report that NF-kappaB promotes UV-induced JNK activation, thereby contributing to UV-induced apoptosis. UV-induced JNK activation is impaired in RelA/NF-kappaB null murine embryonic fibroblasts. In resting cells, the preexisting nuclear RelA has already been recruited to PKCdelta promoter and is essential for its expression. UV-induced rapid and robust activation of JNK requires PKCdelta, which augments JNK phosphorylation-activation by its upstream kinases. The RelA/NF-kappaB-PKCdelta-JNK pathway is critical for UV-induced apoptosis, as it induces the immediate expression of the proapoptotic Fas ligand. Thus, our results demonstrate that RelA/NF-kappaB via PKCdelta positively regulates UV-induced JNK activation and provide a mechanism by which NF-kappaB promotes UV-induced apoptosis.  相似文献   

4.
Anisomycin was identified in a screen of clinical compounds as a drug that kills breast cancer cells (MDA16 cells, derived from the triple negative breast cancer cell line, MDA-MB-468) that express high levels of an efflux pump, ABCB1. We show the MDA16 cells died by a caspase-independent mechanism, while MDA-MB-468 cells died by apoptosis. There was no correlation between cell death and either protein synthesis or JNK activation, which had previously been implicated in anisomycin-induced cell death. In addition, anisomycin analogues that did not inhibit protein synthesis or activate JNK retained the ability to induce cell death. These data suggest that either a ribosome-ANS complex is a death signal in the absence of JNK activation or ANS kills cells by binding to an as yet unidentified target.  相似文献   

5.
Damage to endoplasmic reticulum (ER) homeostasis that cannot be corrected by the unfolded protein response activates cell death. Here, we identified death-associated protein kinase (DAPk) as an important component in the ER stress-induced cell death pathway. DAPk-/- mice are protected from kidney damage caused by injection of the ER stress-inducer tunicamycin. Likewise, the cell death response to ER stress-inducers is reduced in DAPk-/- primary fibroblasts. Both caspase activation and autophagy induction, events that are activated by ER stress and precede cell death, are significantly attenuated in the DAPk null cells. Notably, in this cellular setting, autophagy serves as a second cell killing mechanism that acts in concert with apoptosis, as the depletion of Atg5 or Beclin1 from fibroblasts significantly protected from ER stress-induced death when combined with caspase-3 depletion. We further show that ER stress promotes the catalytic activity of DAPk by causing dephosphorylation of an inhibitory autophosphorylation on Ser(308) by a PP2A-like phosphatase. Thus, DAPk constitutes a critical integration point in ER stress signaling, transmitting these signals into two distinct directions, caspase activation and autophagy, leading to cell death.  相似文献   

6.
Drosophila TAB2 is required for the immune activation of JNK and NF-kappaB   总被引:1,自引:0,他引:1  
The TAK1 plays a pivotal role in the innate immune response of Drosophila by controlling the activation of JNK and NF-kappaB. Activation of TAK1 in mammals is mediated by two TAK1-binding proteins, TAB1 and TAB2, but the role of the TAB proteins in the immune response of Drosophila has not yet been established. Here, we report the identification of a TAB2-like protein in Drosophila called dTAB2. dTAB2 can interact with dTAK1, and stimulate the activation of the JNK and NF-kB signaling pathway. Furthermore, we have found that silencing of dTAB2 expression by dsRNAi inhibits JNK activation by peptidoglycans (PGN), but not by NaCl or sorbitol. In addition, suppression of dTAB2 blocked PGN-induced expression of antibacterial peptide genes, a function normally mediated by the activation of NF-kappaB signaling pathway. No significant effect on p38 activation by dTAB2 was found. These results suggest that dTAB2 is specifically required for PGN-induced activation of JNK and NF-kappaB signaling pathways.  相似文献   

7.
Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation.  相似文献   

8.
Zhou JH  Yu DV  Cheng J  Shapiro DJ 《Steroids》2007,72(11-12):765-777
Tamoxifen (Tam), and its active metabolite, 4-hydroxytamoxifen (OHT), compete with estrogens for binding to the estrogen receptor (ER). Tam and OHT can also induce ER-dependent apoptosis of cancer cells. 10-100nM OHT induces ER-dependent apoptosis in approximately 3 days. Using HeLaER6 cells, we examined the role of OHT activation of signal transduction pathways in OHT-ER-mediated apoptosis. OHT-ER activated the p38, JNK and ERK1/2 pathways. Inhibition of p38 activation with SB203580, or RNAi-knockdown of p38alpha, moderately reduced OHT-ER mediated cell death. A JNK inhibitor partly reduced cell death. Surprisingly, the MEK1/2 inhibitor, PD98059, completely blocked OHT-ER induced apoptosis. EGF, an ERK1/2 activator, enhanced OHT-induced apoptosis. OHT induced a delayed and persistent phosphorylation of ERK1/2 that persisted for >80h. Addition of PD98059 as late as 24h after OHT largely blocked OHT-ER mediated apoptosis. The antagonist, ICI 182,780, blocked both the long-term OHT-mediated phosphorylation of ERK1/2 and OHT-induced apoptosis. Our data suggests that the p38 and JNK pathways, which often play a central role in apoptosis, have only a limited role in OHT-ER-mediated cell death. Although rapid activation of the ERK1/2 pathway is often associated with cell growth, persistent activation of the ERK1/2 pathway is essential for OHT-ER induced cell death.  相似文献   

9.
Despite extensive investigation, the molecular mechanism of anticancer activity of sphingolipid metabolites remains to be clarified. Here we demonstrate that sphingosine induces mitochondrial cell death via Lck-mediated conformational activation of Bak in Jurkat T cell lymphoma. Treatment of cells with sphingosine rapidly induced mitochondrial membrane potential loss, cytochrome c release from mitochondria, and apoptotic cell death. Sphingosine also induced conformational activation of Bak, but not Bax. siRNA targeting of Bak effectively attenuated sphingosine-induced mitochondrial cell death, indicating that Bak is involved in sphingosine-induced mitochondrial cell death. Sphingosine also induced activation of tyrosine kinase Lck. Inhibition of Lck by treatment of PP2, a Lck inhibitor or siRNA targeting of Lck suppressed sphingosine-induced conformational activation and oligomerization of Bak, mitochondrial membrane potential loss, and apoptotic cell death, implying that activation of Lck is critically required for sphingosine-induced conformational activation of Bak and mitochondrial cell death. The results elucidated in this study provide a novel cellular mechanism for the anticancer activity of sphingolipid metabolites.  相似文献   

10.
Metaxin is required for tumor necrosis factor-induced cell death   总被引:4,自引:1,他引:3       下载免费PDF全文
We used retrovirus insertion-mediated random mutagenesis and tumor necrosis factor (TNF) selection to generate TNF-resistant lines from L929 cells. The metaxin gene, which encodes a protein located on the outer membrane of mitochondria, was identified to be the gene disrupted in one of the resistant lines. The requirement of metaxin in TNF-induced cell death of L929 was confirmed by the restoration of TNF sensitivity after ectopic reconstitution of metaxin expression. Analysis of the cell death induced by other stimuli revealed that metaxin deficiency-mediated death resistance was selective to certain stimuli. Studies using deletion mutants of metaxin showed that mitochondrial association of metaxin is required for the function of metaxin. Over-expression of truncated metaxin lacking the mitochondria anchoring sequence mimicked metaxin deficiency in wild-type cells. Interfering with metaxin prevented TNF-induced necrotic cell death in L929 cells and apoptosis in MCF-7 cells. Our work has thus defined a novel component in the death pathway used by TNF and some other death stimuli.  相似文献   

11.
Localization of the death receptor Fas to specialized membrane microdomains is crucial to Fas-mediated cell death signaling. Here, we report that the post-translational modification of Fas by palmitoylation at the membrane proximal cysteine residue in the cytoplasmic region is the targeting signal for Fas localization to lipid rafts, as demonstrated in both cell-free and living cell systems. Palmitoylation is required for the redistribution of Fas to actin cytoskeleton-linked rafts upon Fas stimulation and for the raft-dependent, ezrin-mediated cytoskeleton association, which is necessary for the efficient Fas receptor internalization, death-inducing signaling complex assembly and subsequent caspase cascade leading to cell death.  相似文献   

12.
Innate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. An Arabidopsis MAPK cascade (MEKK1, MKK4/MKK5, and MPK3/MPK6) has been proposed to function downstream of the flagellin receptor FLS2 based on biochemical assays using transient overexpression of candidate components. To genetically test this model, we characterized two mekk1 mutants. We show here that MEKK1 is not required for flagellin-triggered activation of MPK3 and MPK6. Instead, MEKK1 is essential for activation of MPK4, a MAPK that negatively regulates systemic acquired resistance. We also showed that MEKK1 negatively regulates temperature-sensitive and tissue-specific cell death and H(2)O(2) accumulation that are partly dependent on both RAR1, a key component in resistance protein function, and SID2, an isochorismate synthase required for salicylic acid production upon pathogen infection.  相似文献   

13.
Caspase activation is indispensable for the proper execution of apoptosis. However, to date, little is known about other possible physiologic functions for this class of enzymes in addition to their well-defined role in apoptosis. In this report, we described an action of caspase-3 involving cell dispersion that is independent of cell death. Using an in vitro neuronal model system consisting of PC12 cells, we observed a transient activation of caspase-3 both in situ and by Western blot analysis that was evident at 1 h following plating, was maximal by 3 h, and was attenuated by 24 h. Preincubation of PC12 cells with either the caspase-3 inhibitor, DEVD, or antisense caspase-3 oligonucleotides caused cells to be more rounded in appearance and led to a failure of cells to disperse properly. Additional experiments demonstrated a possible target for caspase cleavage to be the cytoskeletal protein, tau. These data suggest a requirement for caspase activation and subsequent disassembly of the cytoskeleton during cell dispersion and represent a novel role for caspases that may allow for proper migration of neurons to target locations during development.  相似文献   

14.
BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  相似文献   

15.
16.
Tyrosine kinase Btk is required for NK cell activation   总被引:1,自引:0,他引:1  
Bao Y  Zheng J  Han C  Jin J  Han H  Liu Y  Lau YL  Tu W  Cao X 《The Journal of biological chemistry》2012,287(28):23769-23778
Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk(-/-) NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk(-/-) mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk(-/-) mice after the adoptive transfer of Btk(+/+) NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response.  相似文献   

17.
Autophagy is the main process for bulk protein and organelle recycling in cells under extracellular or intracellular stress. Deregulation of autophagy has been associated with pathological conditions such as cancer, muscular disorders and neurodegeneration. Necrotic cell death underlies extensive neuronal loss in acute neurodegenerative episodes such as ischemic stroke. We find that excessive autophagosome formation is induced early during necrotic cell death in C. elegans. In addition, autophagy is required for necrotic cell death. Impairment of autophagy by genetic inactivation of autophagy genes or by pharmacological treatment suppresses necrosis. Autophagy synergizes with lysosomal catabolic mechanisms to facilitate cell death. Our findings demonstrate that autophagy contributes to cellular destruction during necrosis. Thus, interfering with the autophagic process may protect neurons against necrotic damage in humans.  相似文献   

18.
19.
《Autophagy》2013,9(5):680-691
Autophagic cell death in Dictyostelium can be dissociated into a starvation-induced sensitization stage and a death induction stage. A UDP-glucose pyrophosphorylase (ugpB) mutant and a glycogen synthase (glcS) mutant shared the same abnormal phenotype. In vitro, upon starvation alone mutant cells showed altered contorted morphology, indicating that the mutations affected the pre-death sensitization stage. Upon induction of cell death, most of these mutant cells underwent death without vacuolization, distinct from either autophagic or necrotic cell death. Autophagy itself was not grossly altered as shown by conventional and electron microscopy. Exogenous glycogen or maltose could complement both ugpB- and glcS- mutations, leading back to autophagic cell death. The glcS- mutation could also be complemented by 2-deoxyglucose that cannot undergo glycolysis. In agreement with the in vitro data, upon development glcS- stalk cells died but most were not vacuolated. We conclude that a UDP-glucose derivative (such as glycogen or maltose) plays an essential energy-independent role in autophagic cell death.  相似文献   

20.
Autophagic cell death in Dictyostelium can be dissociated into a starvation-induced sensitization stage and a death induction stage. A UDP-glucose pyrophosphorylase (ugpB) mutant and a glycogen synthase (glcS) mutant shared the same abnormal phenotype. In vitro, upon starvation alone mutant cells showed altered contorted morphology, indicating that the mutations affected the pre-death sensitization stage. Upon induction of cell death, most of these mutant cells underwent death without vacuolization, distinct from either autophagic or necrotic cell death. Autophagy itself was not grossly altered as shown by conventional and electron microscopy. Exogenous glycogen or maltose could complement both ugpB(-) and glcS(-) mutations, leading back to autophagic cell death. The glcS(-) mutation could also be complemented by 2-deoxyglucose that cannot undergo glycolysis. In agreement with the in vitro data, upon development glcS(-) stalk cells died but most were not vacuolated. We conclude that a UDP-glucose derivative (such as glycogen or maltose) plays an essential energy-independent role in autophagic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号