首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Besides regulatory T cells, also comprising T cell receptor (CR)-specific T cells, it is increasingly evident that natural autoantibodies, among which anti-TCR antibodies represent additional immunomodulators in the immune system. We took advantage of myasthenia gravis (MG), a well-characterized antibody-mediated autoimmune disease, to demonstrate that without prior vaccination against TCR determinants, patients with MG present increased circulating anti-TCR antibodies directed to the dominant TCR used by pathogenic T cells. These findings, pointing to a regulatory protective role of anti-TCR antibodies, are discussed in the context of the mechanisms of action and the physiological role of anti-TCR antibodies in T cell homeostasis, and of the puzzling world of regulatory T cells. Natural anti-TCR antibodies are found in the serum of all individuals, with prevalence in physiological and pathological situations such as ageing, pregnancy, allograft transplantation, retroviral infection, and autoimmune diseases, including MG. The common link is the mounting of immune responses against alloantigens, pathogens or autoantigens, conferring on anti-TCR antibodies a broader role in controlling responses to any antigen (self or non-self) and more generally in T cell homeostasis. This homeostasis mechanism may well be exploited in therapeutic strategies based on TCR peptide vaccination in autoimmune diseases.  相似文献   

2.
Recent researches shed light on B cell role on various autoimmune diseases, including autoantibody-mediated diseases as well as T cell-mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. B cells play a critical role in the immune response beyond the production of antibodies through mechanisms such as antigen presentation and cytokine production. Furthermore, B cells have recently been recognized to play a role in promoting tumor immunity against cancer. However, not all B cells positively regulate immune responses. Regulatory B cells negatively regulate immune responses by the production of anti-inflammatory cytokines such as interleukin (IL)-10, IL-35, and transforming growth factor-beta. Thus, a balance between effector and regulatory B cells regulates the immune response through the release of cytokines. In this review, we highlight the main emerging roles of B cells in tumor immunity with a focus on the T cell response. These findings can guide a protocol for selectively depleting regulatory B cells as a potential therapeutic strategy for patients with cancer.  相似文献   

3.
Although B cell depletion therapy (BCDT) is now a well-accepted therapeutic option in autoimmune rheumatic disease, a significant proportion of patients remain resistant to therapy. .19pt?>A more challenging clinical problem is the high rate of relapse after B cell reconstitution, as well as the difficulty in predicting the exact timing of that relapse. In this article, we consider the immunological mechanisms that may account for the heterogeneity of clinical response to BCDT. Understanding how BCDT alters the balance between different B cell subsets, some pathogenic and some regulatory, may help us correctly target BCDT to the right patients, and thereby improve treatment responses in rheumatic disease.The identification of autoantibodies in the serum of patients with rheumatic disease was one of the landmark studies that placed B cells at the heart of research into the pathogenesis of autoimmune disease. It is now clear that B cells contribute to autoimmunity by a range of mechanisms, both directly through the secretion of inflammatory cytokines [1] and indirectly by antigen presentation and co-stimulation to activate autoreactive T cells. However, it was only at the beginning of the last decade that attention finally turned to B cells as a potential target that may ameliorate autoimmune rheumatic disease.  相似文献   

4.
B cells play a pathogenic or regulatory role in many autoimmune diseases through production of autoantibodies, cytokine production, and Ag presentation. However, the mechanisms that regulate these B cell functions under different autoimmune settings remain unclear. In the current study, we found that when B cells overexpress an antiapoptotic gene, Bcl(XL), they significantly increased production of IFN-gamma and enhanced Th1 response. Consistently, Bcl-x(L) transgenic mice developed more severe and sustained collagen-induced arthritis due to the enhanced Th1 response. The production of autoantibodies in Bcl(XL) transgenic mice was comparable to that in wild-type mice. Thus, our results indicate a novel role of Bcl(XL) in regulating B cell functions and immune responses. In patients with rheumatoid arthritis, arthritogenic B cells often up-regulate Bcl(XL) expression, which may not only render B cells resistant to apoptosis but also alter the ability of the autoreactive B cells to produce cytokines and modulate the inflammatory response. This may have therapeutic implications if Bcl(XL) expression can be down-regulated in autoreactive B cells.  相似文献   

5.
Yang HZ  Li Z  Liu HZ  Mi S  Hu ZW 《生理科学进展》2009,40(4):297-302
B细胞主要通过呈递抗原和产生抗体发挥免疫调节作用.新近研究表明,一种全新的B细胞亚群--调节性B细胞(regulatory B cell,Bregs),可通过产生白细胞介素10(IL-10)或转化生长因子β1(TGF-β1)等抑制性细胞因子介导免疫耐受,抑制过度炎症反应.Bregs在一些慢性炎性疾病包括肠炎、类风湿性关节炎、实验性自身免疫脑脊髓炎、多发性硬化症、感染和肿瘤等发生、发展和转归过程起重要调节作用.Bregs的发现和作用机制的阐明,将为全面、深入了解免疫耐受的机制,寻找和开发更合理治疗慢性炎性疾病的策略提供理论依据.本文综述了Bregs的发现、生物学特征、发育调节及其参与炎性疾病发病的作用和机制.  相似文献   

6.
B lymphocytes are the source of humoral immunity and are thus a critical component of the adaptive immune system. However, B cells can also be pathogenic and the origin of disease. Deregulated B-cell function has been implicated in several autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B cells contribute to pathological immune responses through the secretion of cytokines, costimulation of T cells, antigen presentation, and the production of autoantibodies. DNA-and RNA-containing immune complexes can also induce the production of type I interferons, which further promotes the inflammatory response. B-cell depletion with the CD20 antibody rituximab has provided clinical proof of concept that targeting B cells and the humoral response can result in significant benefit to patients. Consequently, the interest in B-cell targeted therapies has greatly increased in recent years and a number of new biologics exploiting various mechanisms are now in clinical development. This review provides an overview on current developments in the area of B-cell targeted therapies by describing molecules and subpopulations that currently offer themselves as therapeutic targets, the different strategies to target B cells currently under investigation as well as an update on the status of novel therapeutics in clinical development. Emerging data from clinical trials are providing critical insight regarding the role of B cells and autoantibodies in various autoimmune conditions and will guide the development of more efficacious therapeutics and better patient selection.  相似文献   

7.
赵若竹  祁海 《生命的化学》2020,40(2):139-145
体液免疫应答具有明显的两性差异。通常女性产生的针对外来病原体或者自身抗原的抗体水平相比男性更高,因此女性比男性更容易清除病原体的感染,但女性也比男性更容易患自身免疫疾病。长效且高亲和力的体液免疫应答依赖由B细胞形成的生发中心(germinal center,GC)反应,然而B细胞形成GC的能力是否存在两性差异从而直接导致体液免疫应答的两性差异尚不清楚。该研究提出了一套在分子和细胞水平上解释体液免疫应答两性差异的新机制,即雄激素可以增强B细胞表达的GPR174在接收到CCL21信号后与Gαi蛋白的结合水平,由此促进雄性B细胞更多地迁移在滤泡外周,而不能更多地迁移至滤泡中心形成GC及抗体应答,从而直接介导体液免疫应答的两性差异。该研究为解决在增强保护性疫苗抗体应答水平以及治疗自身免疫疾病时遇到的B细胞介导的两性差异问题提供了新的见解。  相似文献   

8.
The antimalarial drug artemisinin and its derivatives exhibit potent immunosuppressive activity in several autoimmune disease models, however the mechanisms are not well-understood. This study was designed to investigate the therapeutic effects and the underlying mechanisms of the artemisinin analog artesunate using the K/BxN mouse model of rheumatoid arthritis. The well-studied disease mechanisms of K/BxN model allowed us to pinpoint the effect of artesunate on disease. Artesunate treatment prevented arthritis development in young K/BxN mice by inhibiting germinal center (GC) formation and production of autoantibodies. In adult K/BxN mice with established arthritis, artesunate diminished GC B cells in a few days. However, artesunate did not affect the follicular helper T cells (Tfh). In contrast to the spontaneous K/BxN model, artesunate treatment exerted minor influence on K/BxN serum transfer induced arthritis suggesting that artesunate has minimal effect on inflammatory responses downstream of antibody production. Finally, we showed that artesunate preferentially inhibits proliferating GC B cells. These results identify GC B cells as a target of artesunate and provide a new rationale for using artemisinin analogues to treat autoimmune diseases mediated by autoantibodies.  相似文献   

9.
Although dysfunctional dendritic cells contribute to inadequate adaptive immunity in chronic hepatitis B (CHB), underlying molecular mechanisms remain largely undefined. In this study, we examined B7-H1 expression on circulating myeloid dendritic cells (mDCs) in 46 CHB patients, 10 autoimmune hepatitis patients, and 10 healthy subjects as control. We found that B7-H1 expression is significantly up-regulated on circulating mDCs of CHB and autoimmune hepatitis patients compared with healthy individuals. The B7-H1 up-regulation was significantly correlated with an elevation of serum alanine aminotransaminase levels and plasma viral load. In addition, in vitro, both IFN-alpha and IFN-gamma could strongly stimulate mDCs to express B7-H1. More importantly, elevated B7-H1 expression is also closely associated with the suppression of T cell immune function. In vitro blockade of B7-H1 signaling could not only down-regulate IL-10 and up-regulate IL-12 production by mDCs, but also enhance mDC-mediated allostimulatory capacity and cytokine production of T cells. Blockade of B7-H1 signaling could improve hepatitis B c Ag-pulsed monocyte-derived DC-induced IFN-gamma production by autologous hepatitis B virus-specific T cells. These new findings suggested that chronic inflammation may contribute to B7-H1 up-regulation on mDCs in CHB patients, which potentially cause defective hepatitis B virus-specific T cell function and viral persistence. Our findings further support the notion that the blockade of B7-H1 may represent a novel therapeutic approach for this disease.  相似文献   

10.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

11.
Because inappropriate activation of Toll‐like receptor 9 (TLR9) may induce pathological damage, negative regulation of the TLR9‐triggered immune response has attracted considerable attention. Nonpathogenic immune complex (IC) has been demonstrated to have beneficial therapeutic effects in some kinds of autoimmune diseases. However, the role of IC in the regulation of TLR9‐triggered immune responses and the underlying mechanisms remain unclear. In this study, it was demonstrated that IC stimulation of B cells not only suppresses CpG‐oligodeoxynucleotide (CpG‐ODN)‐induced pro‐inflammatory IL‐6 and IgM κ production, but also attenuates CD40 and CD80 expression. Furthermore, our results suggest that the receptor for the Fc portion of IgG (FcγR) IIb is involved in the suppressive effect of IC on TLR9‐mediated CD40, CD80 and IL‐6 expression. Finally, it was found that IC down‐regulates TLR9 expression in CpG‐ODN activated B cells. Our results provide an outline of a new pathway for the negative regulation of TLR9‐triggered immune responses in B cells via FcγRIIb. A new mechanistic explanation of the therapeutic effect of nonpathogenic IC on inflammatory and autoimmune diseases is also provided.  相似文献   

12.
Yang P  Li B  Lv P  Zhang Y  Gao XM 《Cell research》2007,17(6):556-564
Systemic lupus erythematosus (SLE) is a typical autoimmune disease involving multiple systems and organs. Ample evidence suggests that autoreactive T cells play a pivotal role in the development of this autoimmune disorder. This study was undertaken to investigate the mechanisms of interaction between antigen presenting cells (APCs) and an autoreactive T cell (ATLI) clone obtained from lupus-prone BXSB mice. ATLI cells, either before or after 7-ray irradiation, were able to activate naive B cells, as determined by B cell proliferation assays. Macrophages from BXSB mice were able to stimulate the proliferation of resting ATL 1 cells at a responder/stimulator (R/S) ratio of 1/2.5. Dendritic cells (DCs) were much more powerful stimulators for ATLI cells on a per cell basis. The T cell stimulating ability ofmacrophages and B cells, but not DCs, was sensitive to T-ray irradiation. Monoclonal antibodies against mouse MHC-Ⅱ and CD4 were able to block DC-mediated stimulation of ATL 1 proliferation, indicating cognate recognition between ATL 1 and APCs. Our data suggest that positive feedback loops involving macrophages, B cells and autoreactive T cells may play a pivotal role in keeping the momentum of autoimmune responses leading to autoimmune diseases.  相似文献   

13.
B cells play a pivotal role in the pathogenesis of autoimmune disease (AD) by the production of autoantibodies, secretion of cytokines and presentation of autoantigens. As a pro-survival factor mainly produced by myeloid cells, B cell-activating factor (BAFF) maintains B cell maturation and homeostasis at various B cell differentiation stages. Under autoimmune conditions, BAFF acts on autoreactive B cells that have escaped checkpoint apoptosis from negative selection. Numerous studies have shown increased levels of BAFF in patients with ADs and in mouse models with ADs wherein the production of autoantibodies is a prominent feature of immunopathology. Compelling evidence has indicated a key function of BAFF in driving autoreactive B cell response during autoimmune progression. Recent clinical studies have demonstrated BAFF as a therapeutic target in various ADs. Here, we review recent findings on BAFF expression and its effector mechanisms in autoimmune pathogenesis as well as newly developed therapeutic targeting of BAFF in the treatment of ADs.  相似文献   

14.
Cancer vaccines have been developed to instruct the endogenous immune responses to autologous tumors and to generate durable clinical responses. However, the therapeutic benefits of cancer vaccines remain insufficient due to the multiple immunosuppressive signals delivered by tumors. Thus, to improve the clinical efficacy of cancer immunotherapy, it is important to develop new modalities to overcome immunosuppressive tumor microenvironments and elicit effective antitumor immune responses. In this study, we show that novel monoclonal antibodies (mAbs) specifically targeting either T cell immunoglobulin mucin protein-3 (TIM-3) or T cell immunoglobulin mucin protein-4 (TIM-4) enhance the therapeutic effects of vaccination against established B16 murine melanomas. This is true for vaccination with irradiated B16 melanoma cells engineered to express the flt3 ligand gene (FVAX). More importantly, combining anti-TIM-3 and anti-TIM-4 mAbs markedly increased vaccine-induced antitumor responses against established B16 melanoma. TIM-3 blockade mainly stimulated antitumor effector activities via natural killer cell-dependent mechanisms, while CD8+ T cells served as the main effectors induced by anti-TIM-4 mAb. Our findings reveal that therapeutic manipulation of TIM-3 and TIM-4 may provide a novel strategy for improving the clinical efficacy of cancer immunotherapy.  相似文献   

15.
B cell abnormalities contribute to the development and progress of autoimmune disease.Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited tothe production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells haveother functions potentially relevant to autoimmunity. Such functions include antigen presentation toand activation of T cells, expression of co-stimulatory molecules and cytokine production. Recently,the ability of B cells to negatively regulate cellular immune responses and inflammation has beendescribed and the concept of regulatory B cells has emerged. A variety of cytokines produced byregulatory B cell subsets have been reported, with IL-10 being the most studied. In this review,this specific IL-10-producing subset of regulatory B cells has been labeled B10 cells to highlightthat the regulatory function of these rare B cells is mediated by IL-10, and to distinguish themfrom other B cell subsets that regulate immune responses through different mechanisms. B10 cells area functionally defined subset currently identified only by their competency to produce and secreteIL-10 following appropriate stimulation. Although B10 cells share surface markers with otherpreviously defined B cell subsets, currently there is no cell surface or intracellular phenotypicmarker or set of markers unique to B10 cells. The recent discovery of an effective way to expand B10cells ex vivo opens new horizons in the potential therapeutic applications of this rare Bcell subset. This review highlights the current knowledge on B10 cells and discusses their potentialas novel therapeutic agents in autoimmunity.  相似文献   

16.
Autoimmune responses are normally kept in check by immune-tolerance mechanisms, which include regulatory T cells. In recent years, research has focused on the role of a subset of natural killer T (NKT) cells - invariant NKT (iNKT) cells, which are a population of glycolipid-reactive regulatory T cells - in controlling autoimmune responses. Because iNKT cells strongly react with a marine-sponge-derived glycolipid, alpha-galactosylceramide (alpha-GalCer), it has been possible to specifically target and track these cells. As I discuss here, although preclinical studies have shown considerable promise for the development of treatment with alpha-GalCer as a therapeutic modality for autoimmune diseases, several obstacles need to be overcome before moving alpha-GalCer therapy from the bench to the bedside.  相似文献   

17.
Sun Y  Chen HM  Subudhi SK  Chen J  Koka R  Chen L  Fu YX 《Nature medicine》2002,8(12):1405-1413
Humans and mice deficient in Fas, a tumor necrosis factor (TNF)-receptor family member, cannot induce apoptosis of autoreactive cells, and consequently develop progressive lymphoproliferative disorders and lupus-like autoimmune diseases. Previous studies have shown that short-term administrations of agonistic monoclonal antibodies against CD137, another TNF-receptor family member, activate T cells and induce rejection of allografts and established tumors. Here we report that treatment with an agonistic monoclonal antibody to CD137 (2A) blocks lymphadenopathy and spontaneous autoimmune diseases in Fas-deficient MRL/lpr mice, ultimately leading to their prolonged survival. Notably, 2A treatment rapidly augments IFN-gamma production, and induces the depletion of autoreactive B cells and abnormal double-negative T cells, possibly by increasing their apoptosis through Fas- and TNF receptor-independent mechanisms. This study demonstrates that agonistic monoclonal antibodies specific for costimulatory molecules can be used as novel therapeutic agents to delete autoreactive lymphocytes and block autoimmune disease progression.  相似文献   

18.
The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host’s immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the methionine cycle with subsequent hypomethylation of DNA. Here we also outline options for treatment involving rituximab and endotherapia.  相似文献   

19.
S100B is a reporter of blood-brain barrier (BBB) integrity which appears in blood when the BBB is breached. Circulating S100B derives from either extracranial sources or release into circulation by normal fluctuations in BBB integrity or pathologic BBB disruption (BBBD). Elevated S100B matches the clinical presence of indices of BBBD (gadolinium enhancement or albumin coefficient). After repeated sub-concussive episodes, serum S100B triggers an antigen-driven production of anti-S100B autoantibodies. We tested the hypothesis that the presence of S100B in extracranial tissue is due to peripheral cellular uptake of serum S100B by antigen presenting cells, which may induce the production of auto antibodies against S100B. To test this hypothesis, we used animal models of seizures, enrolled patients undergoing repeated BBBD, and collected serum samples from epileptic patients. We employed a broad array of techniques, including immunohistochemistry, RNA analysis, tracer injection and serum analysis. mRNA for S100B was segregated to barrier organs (testis, kidney and brain) but S100B protein was detected in immunocompetent cells in spleen, thymus and lymph nodes, in resident immune cells (Langerhans, satellite cells in heart muscle, etc.) and BBB endothelium. Uptake of labeled S100B by rat spleen CD4+ or CD8+ and CD86+ dendritic cells was exacerbated by pilocarpine-induced status epilepticus which is accompanied by BBBD. Clinical seizures were preceded by a surge of serum S100B. In patients undergoing repeated therapeutic BBBD, an autoimmune response against S100B was measured. In addition to its role in the central nervous system and its diagnostic value as a BBBD reporter, S100B may integrate blood-brain barrier disruption to the control of systemic immunity by a mechanism involving the activation of immune cells. We propose a scenario where extravasated S100B may trigger a pathologic autoimmune reaction linking systemic and CNS immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号