首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative substitution rate of each nucleotide site in bacterial small subunit rRNA, large subunit rRNA and 5S rRNA was calculated from sequence alignments for each molecule. Two-dimensional and three-dimensional variability maps of the rRNAs were obtained by plotting the substitution rates on secondary structure models and on the tertiary structure of the rRNAs available from X-ray diffraction results. This showed that the substitution rates are generally low near the centre of the ribosome, where the nucleotides essential for its function are situated, and that they increase towards the surface. An inventory was made of insertions characteristic of the Archaea, Bacteria and Eucarya domains, and for additional insertions present in specific eukaryotic taxa. All these insertions occur at the ribosome surface. The taxon-specific insertions seem to arise randomly in the eukaryotic evolutionary tree, without any phylogenetic relatedness between the taxa possessing them.  相似文献   

2.
艾丁嗜盐小盒菌B2菌株(Haloarcula aidinensis, strain B2)16Sr RNA的核苷酸序列已以双脱氧核苷酸链终止法确定。该菌16Sr RNA显示出了典型的古生物类(Archaea)特性。虽然艾丁嗜盐小盒菌B2菌株在序列方面更接近细菌类(Bacteria)的16SrRNA,但它的序列也显示出与真核生物类(Eucarya)的某些特殊的相似性。在序列和结构方面,该菌与细菌类或真核生物类之间的相似程度要高于细菌类与真核生物类之间的相似程度。另外,该菌16SrRNA的序列与其它嗜盐菌序列相比较支持了以前的结论,即艾丁嗜盐小盒菌B2菌株应属于嗜盐小盒菌属(Haloarcula)的一新种。  相似文献   

3.
The number of small subunit rRNA sequences is now great enough that the three domains Archaea, Bacteria and Eucarya (Woese et al., 1990) can be reliably defined in terms of their sequence "signatures". Approximately 50 homologous positions (or nucleotide pairs) in the small subunit rRNA characterize and distinguish among the three. In addition, the three can be recognized by a variety of nonhomologous rRNA characters, either individual positions and/or higher-order structural features. The Crenarchaeota and the Euryarchaeota, the two archaeal kingdoms, can also be defined and distinguished by their characteristic compositions at approximately fifteen positions in the small subunit rRNA molecule.  相似文献   

4.
We have determined the three-dimensional organization of ribosomal RNAs and proteins essential for minimal ribosome function. Comparative sequence analysis identifies regions of the ribosome that have been evolutionarily conserved, and the spatial organization of conserved domains is determined by mapping these onto structures of the 30S and 50S subunits determined by X-ray crystallography. Several functional domains of the ribosome are conserved in their three-dimensional organization in the Archaea, Bacteria, Eucaryotic nuclear, mitochondria and chloroplast ribosomes. In contrast, other regions from both subunits have shifted their position in three-dimensional space during evolution, including the L11 binding domain and the alpha-sarcin-ricin loop (SRL). We examined conserved bridge interactions between the two ribosomal subunits, giving an indication of which contacts are more significant. The tRNA contacts that are conserved were also determined, highlighting functional interactions as the tRNA moves through the ribosome during protein synthesis. To augment these studies of a large collection of comparative structural models sampled from all major branches on the phylogenetic tree, Caenorhabditis elegans mitochondrial rRNA is considered individually because it is among the smallest rRNA sequences known. The C.elegans model supports the large collection of comparative structure models while providing insight into the evolution of mitochondrial ribosomes.  相似文献   

5.
MOTIVATION: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initiated with regions of signal transduction proteins where no known domains can be identified by current domain models. RESULTS: Using profile searches followed by multiple sequence alignment, structure prediction and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.  相似文献   

6.
The "ribose zipper", an important element of RNA tertiary structure, is characterized by consecutive hydrogen-bonding interactions between ribose 2'-hydroxyls from different regions of an RNA chain or between RNA chains. These tertiary contacts have previously been observed to also involve base-backbone and base-base interactions (A-minor type). We searched for ribose zipper tertiary interactions in the crystal structures of the large ribosomal subunit RNAs of Haloarcula marismortui and Deinococcus radiodurans, and the small ribosomal subunit RNA of Thermus thermophilus and identified a total of 97 ribose zippers. Of these, 20 were found in T. thermophilus 16 S rRNA, 44 in H. marismortui 23 S rRNA (plus 2 bridging 5 S and 23 S rRNAs) and 30 in D. radiodurans 23 S rRNA (plus 1 bridging 5 S and 23 S rRNAs). These were analyzed in terms of sequence conservation, structural conservation and stability, location in secondary structure, and phylogenetic conservation. Eleven types of ribose zippers were defined based on ribose-base interactions. Of these 11, seven were observed in the ribosomal RNAs. The most common of these is the canonical ribose zipper, originally observed in the P4-P6 group I intron fragment. All ribose zippers were formed by antiparallel chain interactions and only a single example extended beyond two residues, forming an overlapping ribose zipper of three consecutive residues near the small subunit A-site. Almost all ribose zippers link stem (Watson-Crick duplex) or stem-like (base-paired), with loop (external, internal, or junction) chain segments. About two-thirds of the observed ribose zippers interact with ribosomal proteins. Most of these ribosomal proteins bridge the ribose zipper chain segments with basic amino acid residues hydrogen bonding to the RNA backbone. Proteins involved in crucial ribosome function and in early stages of ribosomal assembly also stabilize ribose zipper interactions. All ribose zippers show strong sequence conservation both within these three ribosomal RNA structures and in a large database of aligned prokaryotic sequences. The physical basis of the sequence conservation is stacked base triples formed between consecutive base-pairs on the stem or stem-like segment with bases (often adenines) from the loop-side segment. These triples have previously been characterized as Type I and Type II A-minor motifs and are stabilized by base-base and base-ribose hydrogen bonds. The sequence and structure conservation of ribose zippers can be directly used in tertiary structure prediction and may have applications in molecular modeling and design.  相似文献   

7.
The genes for nine ribosomal proteins, L24, L5, S14, S8, L6, L18, S5, L30, and L15, have been isolated and sequenced from the spc operon in the archaeon (Crenarchaeota) Sulfolobus acidocaldarius, and the putative amino acid sequence of the proteins coded by these genes has been determined. In addition, three other genes in the spc operon, coding for ribosomal proteins S4E, L32E, and L19E (equivalent to rat ribosomal proteins S4, L32, and L19), were sequenced and the structure of the putative proteins was determined. The order of the ribosomal protein genes in the spc operon of the Crenarchaeota kingdom of Archaea is identical to that present in the Euryarchaeota kingdom of Archaea and also identical to that found in bacteria, except for the genes for r-proteins S4E, L32E, and L19E, which are absent in bacteria. Although AUG is the initiation codon in most of the spc genes, GUG (val) and UUG (leu) are also used as initiation codons in S. acidocaldarius. Over 70% of the codons in the Sulfolobus spc operon have A or U in the third position, reflecting the low GC content of Sulfolobus DNA. Phylogenetic analysis indicated that the archaeal r-proteins are a sister group of their eucaryotic counterparts but did not resolve the question of whether the Archaea is monophyletic, as suggested by the L6P, L15P, and L18P trees, or the question of whether the Crenarchaeota is separate from the Euryarchaeota and closer to the Eucarya, as suggested by the S8P, S5P, and L24P trees. In the case of the three Sulfolobus r-proteins that do not have a counterpart in the bacterial ribosome (S4E, L32E, and L19E), the archaeal r-proteins showed substantial identity to their eucaryotic equivalents, but in all cases the archaeal proteins formed a separate group from the eucaryotic proteins.  相似文献   

8.
The key protein of the signal recognition particle (termed SRP54 for Eucarya and Ffh for Bacteria) and the protein (termed SRα for Eucarya and Ftsy for bacteria) involved in the recognition and binding of the ribosome SRP nascent polypeptide complex are the products of an ancient gene duplication that appears to predate the divergence of all extant taxa. The paralogy of the genes encoding the two proteins (both of which are GTP triphosphatases) is argued by obvious sequence similarities between the N-terminal half of SRP54(Ffh) and the C-terminal half of SRα(Ftsy). This enables a universal phylogeny based on either protein to be rooted using the second protein as an outgroup. Phylogenetic trees inferred by various methods from an alignment (220 amino acid positions) of the shared SRP54(Ffh) and SRα(Ftsy) regions generate two reciprocally rooted universal trees corresponding to the two genes. The root of both trees is firmly positioned between Bacteria and Archaea/Eucarya, thus providing strong support for the notion (Iwabe et al. 1989; Gogarten et al. 1989) that the first bifurcation in the tree of life separated the lineage leading to Bacteria from a common ancestor to Archaea and Eucarya. None of the gene trees inferred from the two paralogues support a paraphyletic Archaea with the crenarchaeota as a sister group to Eucarya. Received: 19 March 1998 / Accepted: 5 June 1998  相似文献   

9.
We describe the first identification of pseudouridine (Psi) residues in ribosomal RNA (23S rRNA) of an hyperthermophilic Archaea Sulfolobus acidocaldarius. In contrast to Eucarya rRNA, only six Psi residues were detected, which is rather close to the situation in Bacteria. However, three modified positions (Psi(2479), Psi(2535) and Psi(2550)) are unique for S. acidocaldarius. Two Psi residues at positions 2060 and 2594 are universally conserved, while one other Psi (position 2066) is also common to Eucarya. Taken together the results argue against the conservation of Psi-synthases between Archaea and Bacteria and provide a basis for the search of snoRNA-like guides for Psi formation in Archaea.  相似文献   

10.
Iben JR  Draper DE 《Biochemistry》2008,47(9):2721-2731
Large ribosomal subunit proteins L10 and L12 form a pentameric protein complex, L10(L12) 4, that is intimately involved in the ribosome elongation cycle. Its contacts with rRNA or other ribosomal proteins have been only partially resolved by crystallography. In Escherichia coli, L10 and L12 are encoded from a single operon for which L10(L12) 4 is a translational repressor that recognizes a secondary structure in the mRNA leader. In this study, L10(L12) 4 was expressed from the moderate thermophile Bacillus stearothermophilus to quantitatively compare strategies for binding of the complex to mRNA and ribosome targets. The minimal mRNA recognition structure is widely distributed among bacteria and has the potential to form a kink-turn structure similar to one identified in the rRNA as part of the L10(L12) 4 binding site. Mutations in equivalent positions between the two sequences have similar effects on L10(L12) 4-RNA binding affinity and identify the kink-turn motif and a loop AA sequence as important recognition elements. In contrast to the larger rRNA structure, the mRNA apparently positions the kink-turn motif and loop for protein recognition without the benefit of Mg (2+)-dependent tertiary structure. The mRNA and rRNA fragments bind L10(L12) 4 with similar affinity ( approximately 10 (8) M (-1)), but fluorescence binding studies show that a nearby protein in the ribosome, L11, enhances L10(L12) 4 binding approximately 100-fold. Thus, mRNA and ribosome targets use similar RNA features, held in different structural contexts, to recognize L10(L12) 4, and the ribosome ensures the saturation of its L10(L12) 4 binding site by means of an additional protein-protein interaction.  相似文献   

11.
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.  相似文献   

12.
Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting experiments support formation of predicted secondary and tertiary structure. Gel shift, spectroscopic and yeast three-hybrid assays show specific interactions between ancestral rRNA and ribosomal protein fragments, independent of other, more recent, components of the ribosome. This robustness suggests that the catalytic core of the ribosome is an ancient construct that has survived billions of years of evolution without major changes in structure. Collectively, the data here support a model in which ancestors of the large and small subunits originated and evolved independently of each other, with autonomous functionalities.  相似文献   

13.
Archaea and the prokaryote-to-eukaryote transition.   总被引:19,自引:1,他引:18       下载免费PDF全文
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.  相似文献   

14.
Saccharomyces cerevisiae (strain A224A) has an abnormal distribution of cytoplasmic ribosomal subunits when grown at 36 degrees C, with sucrose-gradient analysis of extracts revealing an apparent excess of material sedimenting at 60 S. This abnormality is not observed at either 23 degrees C or 30 degrees C. At 36 degrees C the defect(s) is expressed as a slowed conversion of 20 S ribosomal precursor RNA to mature 18 S rRNA, although the corresponding maturation of 27 S ribosomal precursor RNA to mature 25 S rRNA is normal. Studies on this yeast strain and on mutants derived from it may help to elucidate the role(s) of individual ribosomal components in controlling ribosome biogenesis in eukaryotes.  相似文献   

15.
Polyamines have been shown to bind to doubled stranded regions of rRNA [3]. Therefore, ribosomal proteins that can be cross linked to these molecules in the ribosomes structure must be bound to or located in the vicinity of the RNA. This technique is the first to yield results on the proteins associated with the rRNA in the eukaryotic ribosome where the lack of purified ribosomal proteins does not allow the use of direct binding studies as in bacterial systems. Proteins S7, S10, S13, S21, S22 and S27 in the small subunit and L2/3, L5, L10/12, L19/20, L22, L23, L36/37, L42 and L43' in the large subunit are labelled when cross linked to [14C]spermidine using 1,5-difluoro 2,4-dinitrobenzene and are good candidates to be RNA-binding proteins in ribosomes from Saccharomyces cerevisiae.  相似文献   

16.
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis.  相似文献   

17.
In this study, I searched for fungal-specific proteins in the genome of the budding yeast Saccharomyces cerevisiae, inferred from a comparison of amino acid sequences. I used the GTOP (Genomes to Protein structures and functions) database of the DDBJ (DNA Data Bank of Japan), which consists of 21 genomes from Archaea, 203 genomes from Bacteria, and 50 genomes from Eucarya (including 18 fungal genomes). Among 5,874 proteins of S. cerevisiae, 1,551 have homologs only in Eucarya, and 504 of the 1,551 have homologs only in fungi. To find fungal-specific proteins, homologs of the homologs have been searched repeatedly. As a result, 132 of the 504 are characterized as fungal-specific proteins. The genes encoding the 132 fungal-specific proteins are not included in the list of essential genes for viability in the S. cerevisiae genome deletion project. Among the 132 proteins, 99 are S. cerevisiae-specific, and no protein that is distributed among 10 or more of the 18 fungal species exists. In addition, most of the fungal-specific proteins are very small and functionally unknown. My results show that the fungal-specific proteins have short evolutionary histories, suggesting that S. cerevisiae produces novel proteins and that ancestral fungi also produced small proteins most of which have disappeared or have been combined with other proteins during fungal evolution.  相似文献   

18.
DEAD-box RNA-dependent ATPases are ubiquitous enzymes that participate in nearly all processes involving RNA, but their detailed molecular functions remain generally unknown. SrmB, one of the five Escherichia coli DEAD-box proteins, participates in the assembly of the large ribosomal subunit notably by facilitating the incorporation of L13, one of the ribosomal proteins that bind 23S rRNA earliest. Previously, we showed that SrmB is tethered to nascent ribosome through interactions with L4, L24 and the region from domain I of 23S rRNA that binds them. To identify the sites of action of SrmB, we have characterized rRNA mutations that bypass SrmB requirement. Five of them affect the same position from two repeated heptanucleotides in domain II of 23S rRNA, whereas two others affect a complementary hexanucleotide in 5S rRNA. Thus the sites of action of SrmB differ from its tethering site. In the mature ribosome, one of the heptanucleotides participates in a highly compact structure that contacts L13, the '1024 G-ribo wrench'. In addition, we have observed that the assembly defect of ΔsrmB cells worsens as rRNA synthesis increases. Based on these results, we propose two non-exclusive scenarios for the role of SrmB in ribosome assembly.  相似文献   

19.
Compared to the prokaryotic 70 S ribosome, the eukaryotic 80 S ribosome contains additional ribosomal proteins and extra segments of rRNA, referred to as rRNA expansion segments (ES). These eukaryotic-specific rRNA ES are mainly on the periphery of the 80 S ribosome, as revealed by cryo-electron microscopy (cryo-EM) studies, but their precise function is not known. To address the question of whether the rRNA ES are structurally conserved among 80 S ribosomes of different fungi we performed cryo-electron microscopy on 80 S ribosomes from the thermophilic fungus Thermomyces lanuginosus and compared it to the Saccharomyces cerevisiae 80 S ribosome. Our analysis reveals general structural conservation of the rRNA expansion segments but also changes in ES27 and ES7/39, as well as the absence of a tertiary interaction between ES3 and ES6 in T. lanuginosus. The differences provide a hint on the role of rRNA ES in regulating translation. Furthermore, we show that the stalk region and interactions with elongation factor 2 (eEF2) are different in T. lanuginosus, exhibiting a more extensive contact with domain I of eEF2.  相似文献   

20.
The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号