首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

3.
Abscisic acid (ABA) regulates stomatal closure in response to water loss. Here, we examined the competence of guard cells to synthesize ABA, using two Arabidopsis ABA biosynthetic enzymes. 35S pro::AtNCED3-GFP and AAO3-GFP were introduced into guard cells of broad bean leaves. AtNCED3-GFP expression was detected at the chloroplasts, whereas green fluorescent protein (GFP) and AAO3-GFP were in the cytosol. The stomatal aperture was decreased in AtNCED3-GFP- and AAO3-GFP-transformed guard cells. This indicated that ABA biosynthesis is stimulated by heterologous expression of AtNCED3 and Arabidopsis aldehyde oxidase 3 (AAO3) proteins, which both seem to be regulatory enzymes for ABA biosynthesis in these cells. Furthermore, stomatal closure by the expression of AtNCED3 and AAO3 suggested that the substrates of the enzymes are present and native ABA-biosynthesis enzymes are active in guard cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. V. Melhorn and K. Matsumi contributed equally to this work.  相似文献   

4.
5.
6.
We isolated several mutants of Arabidopsis thaliana (L.) Heynh. that accumulated less anthocyanin in the plant tissues, but had seeds with a brown color similar to the wild-type. These mutants were allelic with the anthocyaninless1 (anl1) mutant that has been mapped at 15.0 cM of chromosome 5. We performed fine mapping of the anl1 locus and determined that ANL1 is located between the nga106 marker and a marker corresponding to the MKP11 clone. About 70 genes are located between these two markers, including three UDP-glucose:flavonoid-3-O-glucosyltransferase-like genes and a glutathione transferase gene (TT19). A mutant of one of the glucosyltransferase genes (At5g17050) was unable to complement the anl1 phenotype, showing that the ANL1 gene encodes UDP-glucose:flavonoid-3-O-glucosyltransferase. ANL1 was expressed in all tissues examined, including rosette leaves, stems, flower buds and roots. ANL1 was not regulated by TTG1.  相似文献   

7.
8.
9.
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.  相似文献   

10.
11.
12.
13.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

14.
Missihoun TD  Schmitz J  Klug R  Kirch HH  Bartels D 《Planta》2011,233(2):369-382
Arabidopsis thaliana belongs to those plants that do not naturally accumulate glycine betaine (GB), although its genome contains two genes, ALDH10A8 and ALDH10A9 that code for betaine aldehyde dehydrogenases (BADHs). BADHs were initially known to catalyze the last step of the biosynthesis of GB in plants. But they can also oxidize metabolism-derived aminoaldehydes to their corresponding amino acids in some cases. This study was carried out to investigate the functional properties of Arabidopsis BADH genes. Here, we have shown that ALDH10A8 and ALDH10A9 proteins are targeted to leucoplasts and peroxisomes, respectively. The expression patterns of ALDH10A8 and ALDH10A9 genes have been analysed under abiotic stress conditions. Both genes are expressed in the plant and weakly induced by ABA, salt, chilling (4°C), methyl viologen and dehydration. The role of the ALDH10A8 gene was analysed using T-DNA insertion mutants. There was no phenotypic difference between wild-type and mutant plants in the absence of stress. But ALDH10A8 seedlings and 4-week-old plants were more sensitive to dehydration and salt stress than wild-type plants. The recombinant ALDH10A9 enzyme was shown to oxidize betaine aldehyde, 4-aminobutyraldehyde and 3-aminopropionaldehyde to their corresponding carboxylic acids. We hypothesize that ALDH10A8 or ALDH10A9 may serve as detoxification enzymes controlling the level of aminoaldehydes, which are produced in cellular metabolism under stress conditions.  相似文献   

15.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

16.
17.
Panchuk II  Zentgraf U  Volkov RA 《Planta》2005,222(5):926-932
Oxygen-free radicals are thought to play an essential role in senescence. Therefore, the expression patterns of the small gene family encoding the H2O2 scavenging enzymes ascorbate peroxidase (APX; EC 1.11.1.11) were analyzed during senescence of Arabidopsis thaliana (L.) Heinh. Applying real-time RT-PCR, the mRNA levels were quantified for three cytosolic (APX1, APX2, APX6), two chloroplastic types (stromal sAPX, thylakoid tAPX), and three microsomal (APX3, APX4, APX5) isoforms identified in the genome of Arabidopsis. The genes of chloroplastic thylakoid-bound tAPX and the microsomal APX4 exhibit a strong age-related decrease of mRNA level in leaves derived from one rosette as well as in leaves derived from plants of different ages. In contrast to the tAPX, the mRNA of sAPX was only reduced in old leaves of old plants. The microsomal APX3 and APX5, and the cytosolic APX1, APX2, and APX6 did not show remarkable age-related changes in mRNA levels. The data show that expression of the individual APX genes is differentially regulated during senescence indicating possible functional specialization of respective isoenzymes. The hydrogen peroxide levels seem to be controlled very precisely in different cell compartments during plant development.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号