首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogeneous aminopeptidase PC was isolated with yield 67% and purification degree 237 from the hepatopancreas of the Kamchatka crab Paralithodes camtshatica by ion-exchange chromatography on DEAE-Sepharose, hydrophobic chromatography on Phenyl-Sepharose, and gel-filtration on Sephadex G-150. The enzyme is a homodimer with a molecular mass 220 kD (110 x 2). Aminopeptidase PC has pI = 4.1. It hydrolyzes Leu-pNA optimally at pH 6.0 and at the optimum temperature 36-40 degrees C; in the presence of Ca2+ the enzyme is stable at pH 5.5-8.0. Aminopeptidase PC is activated by Ca2+, Mg2+, and Fe2+; it is completely inhibited by EDTA, o-phenanthroline, and bestatin. The enzyme contains four Zn atoms per molecule and is therefore a metalloaminopeptidase. The aminopeptidase PC can effectively cleave N-terminal Arg and Lys residues as well as Leu, Phe, and Met residues. Km and kcat values for hydrolysis of Leu-pNA were 0.075 mM and 0.19 sec-1 and for hydrolysis of Arg-pNA 0.078 mM and 0.48 sec-1, respectively. D-Amino acid residues cannot be cleaved. Thus, aminopeptidase PC of the Kamchatka crab has a mixed substrate specificity which is characteristic of some microbe aminopeptidases. Its N-terminal sequence ESVEIELPEGLSPLV is 46% coincident with that of yeast vacuolar aminopeptidase YSCA.  相似文献   

2.
Three aminopeptidases (L-aminoacyl L-peptide hydrolases, EC 3.4.11) and a single dipeptidase (L-aminoacyl L-amino acid hydrolase, EC 3.4.13) are present in homogenates of Saccharomyces cerevisiae. Bassed on differences in substrate specificity and the sensitivity to Zn2+ activation, methods were developed that allow the selective assay of these enzymes in crude cell extracts. Experiments with isolated vacuoles showed that aminopeptidase I is the only yeast peptidase located in the vacuolar compartment. Aminopeptidase II (the other major aminopeptidase of yeast) seems to be an external enzyme, located mainly outside the plasmalemma. The synthesis of aminopeptidase I is repressed in media containing more than 1% glucose. In the presence of ammonia as the sole nitrogen source its activity is enhanced 3--10-fold when compared to that in cells grown on peptone. In contrast, the levels of aminopeptidase II and dipeptidase are less markedly dependent on growth medium composition. It is concluded that aminopeptidase II facilitates amino acid uptake by degrading peptides extracellularly, whereas aminopeptidase I is involved in intracellular protein degradation.  相似文献   

3.
The effects of peptide inhibitors (bestatin and amastatin) and divalent cations (Ca2+ and Co2+) on the velocity of Asp1 liberation from angiotensin II (A-II) by human placental membrane fractions and binding of 125I A-II to human placental membranes were tested at 22 degrees C and 4 degrees C. Asp1 liberation was measured by high performance liquid chromatography. As expected, the degradation and binding of A-II were temperature sensitive, with both being at 4 degrees C than at 22 degrees C. While amastatin (10(-4) M) and bestatin 10(-6) M) significantly reduced the velocity of Asp1 liberation from A-II to about 45%, amastatin (10(-4) M) and bestatin (10(-4) M) increased 125I A-II binding to 125% and 130%, respectively. Ca2+ (10 mM) and Co2+ (10 mM) activated the velocity of Asp1 liberation from A-II to 140% and 120%, respectively at 22 degrees C. Ca2+ (10(-1) M) and Co2+ (10 mM) also enhanced 125I A-II binding about 130%. Previously we showed that the A-II degrading activity found in human placental membrane fractions is mainly due to aminopeptidases A and M. Since amastatin and bestatin are the specific inhibitors for aminopeptidases A and M, and since Ca2+ and Co2+ are the activators for aminopeptidase A and aminopeptidase M, respectively, it is conceivable that the enzymes regulate the levels of A-II and, therefore, that they may play an important role in the binding of A-II to human placental membrane fractions.  相似文献   

4.
Paragonimus westermani is a tissue-invading trematode parasite that causes inflammatory lung disease as well as systemic infections including cerebral invasion in carnivorous mammals. While aminopeptidases play important roles in trematodes in the catabolism of host hemoglobin, an essential source of nutrient for the parasite, little is known about aminopeptidase in Paragonimus. Presently, we isolated a cDNA encoding a 58 kDa P. westermani leucine aminopeptidase (PwLAP). Deduced amino acid sequence of PwLAP exhibited significant sequence homology with LAP from Schistosoma spp. and Fasciola hepatica. Biochemical analysis of the recombinant PwLAP protein demonstrated preferential substrate specificity for Leu-NHMec and inhibition by EDTA, 1,10-phenanthroline, and bestatin, which are conserved characteristics of the M17 family of leucine aminopeptidase. PwLAP exhibited relatively higher enzyme activity in the presence of Mn2+ compared to Schistosoma mansoni LAP. Based on the biochemical properties and immunohistochemical analysis, PwLAP is concluded to represent a leucine aminopeptidase. The enzyme is most likely responsible for the catabolism of host hemoglobin, and, hence, represents a potential target of Paragonimus chemotherapy.  相似文献   

5.
Leucine aminopeptidases are exopeptidases which are presumably involved in the processing and regular turnover of intracellular proteins; however, their precise function in cellular metabolism remains to be established. Towards this goal, a full-length complementary DNA encoding a plant leucine aminopeptidase was isolated from a cDNA library of Arabidopsis thaliana and sequenced. The nucleotide sequence showed 49.5% identity to the Escherichia coli xerB-encoded leucine aminopeptidase. Sequence analysis revealed that the cDNA encodes a polypeptide of 520 amino acids with a calculated molecular mass of 54,506 Da. The C-terminal part (amino acids 200-520) of the deduced amino acid sequence showed 43.8% sequence identity to the xerB-encoded leucine aminopeptidase and 42.6% sequence identity to the amino acid sequence of bovine lens leucine aminopeptidase (EC 3.4.11.1). No sequence similarity (not even over short sequence elements) was observed with any other known peptidase or proteinase sequence. The cDNA was expressed as a fusion protein from the lacZ promoter in E. coli. Enzymatic analysis proved that the cloned cDNA encoded an active leucine aminopeptidase. The properties of this enzyme, including metal requirements, inhibitor sensitivity, pH optimum and the remarkable temperature stability, are very similar to those reported for leucine aminopeptidases from other tissues. Amino acids involved in metal and substrate binding in bovine lens aminopeptidase are completely conserved in the plant enzyme as well as in the XerB protein. Our results show that leucine aminopeptidases form a superfamily of highly conserved enzymes, spanning the evolutionary period from the bacteria to animals and higher plants. This is the first aminopeptidase cloned from a plant.  相似文献   

6.
Immunological homology was shown between the active site regions of pig and rabbit aminopeptidases N and between those of the corresponding aminopeptidases A. However, no homology was detectable between the aminopeptidases N and A (EC 3.4.11.-) in a given species. The dimeric structure of pig aminopeptidases did not significantly modify their catalytic properties in aqueous solution compared to those of the monomeric rabbit enzymes. Only a slight difference in binding conditions was noted in the case of aminopeptidases N. Aminopeptidase A activity towards acidic substrates was enhanced by physiological concentrations of Ca2+ while that towards neutral substrates was considerably reduced. Therefore, acidic amino acid residues in proteins and peptides may be assumed to be mostly split off in vivo by aminopeptidase A, neutral residues by aminopeptidases N and basic residues by both enzymes. The respective specificity of aminopeptidase A and N for acidic and neutral amino acid residues was found to be mainly due to a more productive binding mode of the substrate rather than to a better affinity.  相似文献   

7.
The presence of aminopeptidases in the cytoplasm, in the cell wall, and in the cytoplasmic membrane fractions ofStreptococcus sanguis 903 was demonstrated by isoelectric focusing in combination with enzyme-staining procedures. The cytoplasm and the cell wall both had two aminopeptidases (pI 4.25 and 4.3) with broad substrate specificities and one enzyme (pI 4.2) specific for arginine substrates. The former enzymes were both stimulated by Co2+ ions; the latter enzyme had no metal cofactor. The cytoplasmic membrane aminopeptidase (pI 4.65) was arginine specific and was not stimulated by metal ions.  相似文献   

8.
During the purification of opiate receptor by affinity chromatography on wheat germ agglutinin-agarose, an aminopeptidase is coeluted with the receptor. Virtually all of both the enzyme and the receptor is retained on the hydroxylapatite column. The aminopeptidase functions optimally at neutral pH and is activated by Mn2+. The enzyme is sensitive to dithiothreitol, is inhibited by amastatin and bestatin, and is insensitive to puromycin. The enzyme seems to be linked to the receptor, since its activity is enhanced byd-Ala2-Met-enkephalinamide or naltrexone. The properties of this aminopeptidase indicate that it is distinct from neutral arylamidase, leucine-aminopeptidase, aminopeptidases A and B, brain acidic aminopeptidase, and the membrane aminoenkephalinase that we purified recently (4).Dedicated to Professor Yasuzo Tsukada.  相似文献   

9.
The Ca2+ +Mg2+-dependent adenosinetriphosphatase (EC 3.6.1.3) and calsequestrin have been isolated from the sarcoplasmic reticulum of normal and dystrophic chicken muscle. The adenosinetriphosphatases, isolated from the two lines of chickens were identical in molecular weight, enzyme activity and in Ca2+ +Mg2+-dependence. Calsequestrins isolated from the two lines bound identical amounts of calcium. There were no differences in the Ca2+ transport functions of the sarcoplasmic reticulum membrane, isolated from the two lines of chickens. These results indicate that morphological differences in dystrophic chicken sarcoplasmic reticulum, described by Sabbadini et al (Sabbadini, R., Scales, D. Inesi, G. FEBS Lett. 54, 8 (1975), cannot be ascribed to qualitative differences in the adenosinetriphosphatase or calsequestrin.  相似文献   

10.
A methionine aminopeptidase (MAP) found in rat liver microsomes behaves as membrane-bound enzyme. Triton-solubilized MAP when chromatographed on DEAE-cellulose columns was separated from other microsomal arylamidases. The enzyme hydrolyzes N-terminal methionine from methionyl-lysyl-bradykinin (Met-Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) being then characterized as a typical aminopeptidase. It also shows preferential arylamidase activity upon Met-2-naphthylamide. MAP was activated by 2-mercaptoethanol and inhibited by p-hydroxymercuribenzoate. Contrarily to other well characterized aminopeptidases, MAP was not affected by EDTA, puromycin or bestatin. Altogether these data suggest that MAP is a unique microsomal enzyme distinct from other previously described aminopeptidases. It could be involved in the removal of methionine from nascent peptides during protein synthesis.  相似文献   

11.
A Novel Aminopeptidase with Highest Preference for Lysine   总被引:1,自引:0,他引:1  
Neuropeptides are formed from sedentary precursors to smaller, active peptides by processing enzymes cleaving at paired basic residues. The process generates peptide intermediates with additional Lys or Arg residues at their NH(2) and COOH termini; the N-terminal basic amino acids are later removed by specific aminopeptidases. We report here a novel lysine-specific aminopeptidase (KAP) of ubiquitous distribution. The enzyme was resolved from puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB), and neuron-specific aminopeptidase (NAP). It was purified by FPLC after (NH(4))(2)SO(4) precipitation. The purified KAP had a K(m) of 333 microM with a V(max) of 0.7 nmol Lys ssNA/min/mg protein. N-terminal basic amino acids, Lys in particular, were its favorable substrates. KAP was inhibited by chelating agents and by serine protease inhibitors. It was highly sensitive to aminopeptidase inhibitor bestatin, but insensitive to puromycin and amastatin, showing that KAP is distinct from PSA, NAP, and aminopeptidase A (APA). The 62,000-Da enzyme had a pH optimum at 7.5 and NaCl was its strongest activator. However, metals could not restore KAP's activity after it was dialyzed against EGTA. Our data indicated that rat KAP did not resemble any aminopeptidases as well as the microbial lysine aminopeptidases.  相似文献   

12.
A 96 kDa aminopeptidase was purified from Streptococcus salivarius subsp. thermophilus NCDO 573. The enzyme had similar properties to aminopeptidases isolated from lactococci and lactobacilli and showed a high degree of N -terminal amino acid sequence homology to aminopeptidase N from Lactococcus lactis subsp. cremoris. It catalysed the hydrolysis of a range of aminoacyl 4-nitroanilides and 7-amido-4-methylcoumarin derivatives, dipeptides, tripeptides and oligopeptides. In common with aminopeptidases from other lactic acid bacteria, the enzyme from Strep. salivarius subsp. thermophilus showed highest activity with lysyl derivatives but was also very active with arginyl and leucyl derivatives. Relative activity with alanyl, phenylalanyl, tyrosyl, seryl and valyl derivatives was considerably lower and with glycyl, glutamyl and prolyl derivatives almost negligible. The aminopeptidase also catalysed the hydrolysis of dipeptides and tripeptides but mostly at rates much less than that with L-lysyl-4-nitroanilide and oligopeptides. The enzyme catalysed the successive hydrolysis of various amino acid residues from the N -terminus of several oligopeptides but it was unable to cleave peptide bonds on the N -terminal side of a proline residue.  相似文献   

13.
Aminopeptidase P (EC 3.4.11.9) was solubilized from pig kidney membranes with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) and then purified by a combination of anion-exchange and hydrophobic-interaction chromatographies. Contaminating peptidase activities were removed by selective affinity chromatography. The purified enzyme was apparently homogeneous on SDS/PAGE with an Mr of 91,000. Enzymic deglycosylation revealed that aminopeptidase P is a glycoprotein, with up to 25% by weight of the protein being due to the presence of N-linked sugars. The phospholipase-solubilized aminopeptidase P was recognized by an antiserum to the cross-reacting determinant (CRD) characteristic of the glycosyl-phosphatidylinositol anchor. This recognition was abolished by mild acid treatment or deamination with HNO2, indicating that the CRD was due exclusively to the inositol 1,2-cyclic phosphate ring epitope generated by the action of PI-PLC. The activity of aminopeptidase P was inhibited by chelating agents and was stimulated by Mn2+ or Co2+ ions, confirming the metallo-enzyme nature of this peptidase. Selective inhibitors of other aminopeptidases (actinonin, amastatin, bestatin and puromycin) had little or no inhibitory effect.  相似文献   

14.
Three aminopeptidases (I--III) were purified from maternal serum using sequential chromatographic fractionations. Aminopeptidase I was specific for N-terminal alpha-L-dicarboxylic acid residues and activated by alkaline earth metals (Ba2+, Ca2+, Sr2+). It is concluded that aminopeptidase I is aminopeptidase A (L-alpha-aspartyl-(L-alpha-glutamyl)-peptide hydrolase, EC 3.4.11.7). Aminopeptidase II hydrolysed all tested substrates including L-cystine and Bz-L-cysteine derivatives but preferred L-leucine derivatives. The properties of aminopeptidase II are equal to those described for the cystine aminopeptidase (oxytocinase) (EC 3.4.11.3.). Aminopeptidase III preferred L-alanine derivatives as substrates. It was activated by Co2+, but strongly inhibited by amastatin, puromycin and L-methionine. The characteristics are reminiscent of those of alanine aminopeptidase (EC 3.4.11.-).  相似文献   

15.
Mutants of Saccharomyces cerevisiae lacking dipeptidyl aminopeptidase yscV were isolated from a strain already defective in dipeptidyl aminopeptidase yscIV, an enzyme with overlapping substrate specificity. The mutants were identified by a staining technique with the chromogenic substrate Ala-Pro-4-methoxy-beta-naphthylamide to screen colonies for the absence of the enzyme. One of the mutants had a thermolabile activity, indicating that it contained a structural gene mutation. The 53 mutants analyzed fell into one complementation group that corresponded to the yscV structural gene, DAP2. The defect segregated 2:2 in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Diploids heterozygous for DAP2 displayed gene dosage effects with respect to yscV enzyme activity. The absence of dipeptidyl aminopeptidase yscV or the combined loss of both dipeptidyl aminopeptidases yscIV and yscV did not affect mitotic growth under rich or poor growth conditions. In contrast to the dipeptidyl aminopeptidase yscIV lesion (ste13), which leads to alpha sterility because strains secrete incompletely processed forms of the alpha-factor pheromone, the dipeptidyl aminopeptidase yscV lesion did not affect mating, and strains produced fully active alpha-factor pheromone. dap2 mutants did not show any obvious phenotype under a variety of conditions tested.  相似文献   

16.
Activities of plasma membrane proteinases such as angiotensin-converting enzyme (ACE), aminopeptidases, and dipeptidyl peptidase IV (DPP-IV) were determined in lymphoid cells of various immunological phenotype which were obtained from 30 patients with lymphoproliferative diseases. The enzyme activities significantly varied depending on the immunological phenotype and stage of cell differentiation, but no correlation was found between activities of ACE, DPP-IV, and aminopeptidases in the cells of different type. The cell lysates studied contained at least two classes of aminopeptidases: metal- and sulfhydryl-dependent enzymes. A sulfhydryl-dependent aminopeptidase with activity optimum at pH 8. 5-9.0 was found for the first time and is suggested to be from a poorly studied aminopeptidase family. In addition to ACE, lysates of leukemic T- and B-cells were found to contain an inhibitor of ACE which was not previously described for these cells.  相似文献   

17.
A highly purified (237-fold) preparation of extracellular Leu-Gly-Gly aminopeptidase was isolated from the 716 strain of mould Aspergillis flavus. The enzyme was found electrophoretically and enzymatically homogeneous, using Leu-beta-naphthylimide as substrate. The pH optimum is 8.60; the temperature optimum is about 50 degrees C. The enzyme was inhibited by EDTA and completely reactivated by Co2+ ions; Ca2+ and Mn2+ ions considerably restored the enzyme activity. The enzyme showed the optimal activity during the cleavage of substrates, containing N-terminal leucine. Mild hydrolysis of leucine-free tripeptides and dipeptides with N-terminal glycine and alanine was observed. The enzyme was found to be stereospecific in some respects. Peptides with a blocked terminal NH2-group are not hydrolyzed by the enzyme.  相似文献   

18.
Two major aminopeptidases, an aminopeptidase B and an aminopeptidase M-like enzyme, were purified from human skeletal muscle by DEAE-cellulose, HPLC gel filtration, and hydroxyapatite column chromatographies. The purified aminopeptidase B exhibits a molecular weight of 76,000 under both native and denaturing conditions. The activity of the aminopeptidase B is regulated by C1 ions and other anions in vitro. On the other hand, the aminopeptidase M-like enzyme is a monomeric protein having a molecular weight of 96,000. It is capable of significantly cleaving Phe-, Leu-, Arg-, and Ala-aminoacyl bonds in the presence of 2-mercaptoethanol. The pH optima for both enzymes are around 7.0, and bestatin is an effective inhibitor of both enzymes.  相似文献   

19.
An intracellular leucine aminopeptidase (LAP) fromPenicillium citrinum (IFO 6352) was purified to homogeneity using three successive purification steps. The enzyme has a native molecular mass of 63 kDa using HPLC gel filtration analysis and a molecular mass of 65 kDa when using SDS-polyacrylamide gel electrophoresis. This monomeric aminopeptidase showed maximum enzyme activity at pH 8.5. An optimum temperature was 45–50°C whenl-Leu-p-nitroanilide (pNA) was the substrate, and enzyme activity drastically decreased above 60°C. The Michaelis-Menten constants forl-Leu-pNA andl-Met-pNA were 2.7 mM and 1.8 mM, respectively. When the enzyme reacted with biosynthetic methionyl human growth hormone, it showed high specificity for N-terminal methionine residue and recognized a stop sequence (Xaa-Pro). The aminopeptidase was inactivated by EDTA or 1,10-phenanthroline, indicating that it is a metallo-exoprotease. Enzyme activity was restored to 90% of maximal activity by addition of Co2+ ions. The activity of EDTA-treated enzyme was restored by addition of Zn2+, but reconstitution with Ca2+, Mg2+ or Mn2+ restored some enzyme activity. It is likely that Co2+ ions play an important role in the catalysis or stability of thePenicillium citrinum aminopeptidase, as zinc plays a similar function in other leucine aminopeptidases.  相似文献   

20.
Two sets of cDNA clones were isolated from cDNA libraries prepared from poly(A+) RNA of rabbit lung and spleen by screening with the cDNA probe for the large subunit (80-kDa subunit) of chicken calcium-dependent protease (Ca2+-protease; Ohno, S., Emori, Y., Imajoh, S., Kawasaki, H., Kisaragi, M., and Suzuki, K. (1984) Nature 312, 566-570). The two sets of clones were identified as cDNA clones for two Ca2+-protease isozymes with high (mu-type) and low (m-type) calcium sensitivities from a comparison of the primary structures deduced from the nucleotide sequences with partial amino acid sequences from the two isozymes. The cDNA clones for the 80-kDa subunits of the mu- and m-type Ca2+-proteases contained, in total, about 1.5- and 2.2-kilobase cDNA inserts, respectively, which correspond roughly to the C-terminal halves of the coding regions and the entire 3'-noncoding regions. The two isozymes are encoded by two distinct mRNA species present in all the tissues examined, although the amount of mRNA significantly differs among the various tissues. Four E-F hand structures, typical calcium-binding structures in various calcium-binding proteins such as calmodulin, were detected in the C-terminal regions of both isozymes, as in the case of chicken Ca2+-protease. Comparison of the amino acid sequences of the two rabbit isozymes and the corresponding region of the chicken enzyme revealed marked homology, which indicates that these three enzymes have the same evolutionary origin. Furthermore, we suggest that the mu-type rabbit Ca2+-protease, rather than the m-type, is similar to chicken Ca2+-protease, which is regarded as an m-type enzyme in the C-terminal region. The evolution and molecular basis of the differences in calcium sensitivities of the Ca2+-proteases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号