首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin HY  Hopkins R  Cao HJ  Tang HY  Alexander C  Davis FB  Davis PJ 《Steroids》2005,70(5-7):444-449
Because the androgen and estrogen nuclear hormone receptors are subject to acetylation, we speculated that the nuclear thyroid hormone receptor-beta1 (TRbeta1), another superfamily member, was also subject to this posttranslational modification. Treatment of 293T cells that contain TRbeta1(wt) with l-thyroxine (T4)(10(-7)M, total concentration) resulted in the accumulation of acetylated TR in nuclear fractions at 30-45 min and a decrease in signal by 60 min. A similar time course characterized recruitment by TR of p300, a coactivator protein with intrinsic transacetylase activity. Recruitment by the receptor of SRC-1, a TR coactivator that also acetylates nucleoproteins, was also demonstrated. Inhibition of the MAPK (ERK1/2) signal transduction cascade by PD 98059 blocked the acetylation of TR caused by T4. Tetraiodothyroacetic acid (tetrac) decreased T4-induced acetylation of TR. At 10(-7)M, 3,5,3'-triiodo-l-thyronine (T3) was comparably effective to T4 in causing acetylation of TR. We studied acetylation in TR that contained mutations in the DNA-binding domain (DBD) (residues 128-142) that are known to be relevant to recruitment of coactivators and to include the MAPK docking site. In response to T4 treatment, the K128A TR mutant transfected into CV-1 cells recruited p300, but not SRC-1, and was subject to acetylation. R132A complexed with SRC-1, but not p300; it was acetylated equally well in both the absence and presence of T4. S142E was acetylated in the absence and presence of T4 and bound SRC-1 under both conditions; this mutant was also capable of binding p300 in the presence of T4. There was no serine phosphorylation of TR in any of these mutants. We conclude that (1) TRbeta1, like AR and ER, is subject to acetylation; (2) the process of acetylation of TR requires thyroid hormone-directed MAPK activity, but not serine phosphorylation of TR by MAPK, suggesting that the contribution of MAPK is upstream in the activation of the acetylase; (3) the amino acid residue 128-142 region of the DBD of TR is important to thyroid hormone-associated recruitment of p300 and SRC-1; (4) acetylation of TR DBD mutants that is directed by T4 appears to be associated with recruitment of p300.  相似文献   

2.
The thyroid hormone receptor (TR) recruits the nuclear corepressors, nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid hormone receptors (SMRT), to target DNA elements in the absence of ligand. While the TR preferentially recruits NCoR, the mechanism remains unclear. The corepressors interact with the TR via interacting domains (IDs) present in their C terminus which contain a conserved motif termed a CoRNR box. Despite their similarity, the corepressor IDs allow for nuclear receptor specificity. Here we demonstrate that NCoR stabilizes the TR homodimer when bound to DNA by preventing its dissociation from thyroid hormone response elements. This suggests that NCoR acts to hold the repression complex in place on target elements. The TR homodimer recruits NCoR through two of its three IDs, one of which is not present in SMRT. This unique ID, N3, contains a CoRNR box but lacks the extended helical motif present in each of the other IDs. Instead, N3 contains an isoleucine just proximal to this motif. This isoleucine is also conserved in N2 but not in the corresponding S2 domain in SMRT. On thyroid hormone response elements and in mammalian cells this residue is critical in both N3 and N2 for high-affinity TR binding. In addition, this residue also controls specificity for the interactions of TR with NCoR. Together these data suggest that the specific recruitment of NCoR by the TR through a unique motif allows for stabilization of the repression complex on target elements.  相似文献   

3.
Steroid receptor RNA activator (SRA), the only known RNA coactivator, augments transactivation by nuclear receptors (NRs). We identified SLIRP (SRA stem-loop interacting RNA binding protein) binding to a functional substructure of SRA, STR7. SLIRP is expressed in normal and tumor tissues, contains an RNA recognition motif (RRM), represses NR transactivation in a SRA- and RRM-dependent manner, augments the effect of Tamoxifen, and modulates association of SRC-1 with SRA. SHARP, a RRM-containing corepressor, also binds STR7, augmenting repression with SLIRP. SLIRP colocalizes with SKIP (Chr14q24.3), another NR coregulator, and reduces SKIP-potentiated NR signaling. SLIRP is recruited to endogenous promoters (pS2 and metallothionein), the latter in a SRA-dependent manner, while NCoR promoter recruitment is dependent on SLIRP. The majority of the endogenous SLIRP resides in the mitochondria. Our data demonstrate that SLIRP modulates NR transactivation, suggest it may regulate mitochondrial function, and provide mechanistic insight into interactions between SRA, SLIRP, SRC-1, and NCoR.  相似文献   

4.
5.
6.
7.
8.
9.
The remarkable structural unity among the different members of the nuclear hormone receptor superfamily stands in striking contrast to the diversity of the chemical structures of their ligands. Of the three currently known classes of ligands, steroids, retinoids, and thyroid hormones, the first two share a common biosynthetic pathway. Both are terpenes, which are derived by assembly of isoprene units. This biosynthetic link suggests that the receptors for three other classes of terpenoid hormones, the insect juvenile hormones and the plant hormones gibberellic acid and abscissic acid, may also be members of the superfamily. A number of putative nuclear hormone receptors that do not have known ligands have been isolated. At least some of the ligands for these orphan members of the receptor superfamily may be found on the list of biologically active terpenes. Finally, the terpenoid connection raises interesting issues for the evolution of the receptor superfamily.  相似文献   

10.
11.
12.
13.
We have developed a novel assembly assay to examine structural changes in the ligand binding domain (LBD) of the thyroid hormone receptor (TR). Fragments including the first helix of the TR LBD interact only weakly with the remainder of the LBD in the absence of hormone, but this interaction is strongly enhanced by the addition of either hormone or the corepressor NCoR. Since neither the ligand nor the corepressor shows direct interaction with this helix, we propose that both exert their effects by stabilizing the overall structure of the LBD. Current models of activation of nuclear hormone receptors focus on a ligand-induced allosteric shift in the position of the C-terminal helix 12 that generates the coactivator binding site. Our results suggest that ligand binding also has more global effects that dynamically alter the structure of the receptor LBD.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号