首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Tbx5(del/+) mice provide a model of human Holt-Oram syndrome. In this study, the cardiac functional phenotypes of this mouse model were investigated with 30-MHz ultrasound by comparing 12 Tbx5(del/+) mice with 12 wild-type littermates at 1, 2, 4, and 8 wk of age. Cardiac dimensions were measured with two-dimensional and M-mode imaging. The flow patterns in the left and right ventricular inflow channels were evaluated with Doppler flow sampling. Compared with wild-type littermates, Tbx5(del/+) mice showed significant changes in the mitral flow pattern, including decreased peak velocity of the left ventricular (LV) early filling wave (E wave), increased peak velocity of the late filling wave (A wave), and decreased or even reversed peak E-to-A ratio. The prolongation of LV isovolumic relaxation time was detected in Tbx5(del/+) neonates as early as 1 wk of age. In Tbx5(del/+) mice, LV wall thickness appeared normal but LV chamber dimension was significantly reduced. LV systolic function did not differ from that in wild-type littermates. In contrast, the Doppler flow spectrum in the enlarged tricuspid orifice of Tbx5(del/+) mice demonstrated increased peak velocities of both E and A waves and increased total time-velocity integral but unchanged peak E/A. In another 13 mice (7 Tbx5(del/+), 6 wild-type) at 2 wk of age, significant correlation was found between Tbx5 gene expression level in ventricular myocardium and LV filling parameters. In conclusion, the LV diastolic function of Tbx5(del/+) mice is significantly deteriorated, whereas the systolic function remains normal.  相似文献   

2.
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.  相似文献   

3.
Developmental changes in left and right ventricular diastolic filling patterns were determined noninvasively in isoflurane-anesthetized outbred ICR mice. Blood velocities in the mitral and tricuspid orifices were recorded in 16 embryos at days 14.5 (E14.5) and 17.5 of gestation (E17.5) using an ultrasound biomicroscope and also serially in three groups of postnatal mice aged 1-7 days (n = 23), 1-4 wk (n = 18), and 4-12 wk (n = 27) using 20-MHz pulsed Doppler. Postnatal body weight increased rapidly to 8 wk. Heart rate increased rapidly from approximately 180 beats/min at E14.5 to approximately 380 beats/min at 1 wk after birth and then more gradually to plateau at approximately 450 beats/min after 4 wk. Ventricular filling was quantified using the ratio of peak velocity of early ventricular filling due to active relaxation (E wave) to that of the late ventricular filling caused by atrial contraction (A wave) (peak E/A ratio) and the ratio of the peak E velocity to total time-velocity integral of E and A waves (peak E/total TVI ratio). Both ventricles had similar diastolic filling patterns in embryos (peak E/A ratio of 0.28 +/- 0.02 for mitral flow and 0.27 +/- 0.02 for tricuspid flow at E14.5). After birth, mitral peak E/A increased to >1 between the third and fifth day, continued to increase to 2.25 +/- 0.25 at approximately 3 wk, and then remained stable. The tricuspid peak E/A ratio increased much less but stabilized at the same age (increased to 0.79 +/- 0.03 at 3 wk). The peak E/total TVI ratio showed similar left-right differences and changes with development. Age-related changes were largely due to increases in peak E velocity. The results suggest that diastolic function matures approximately 3 wk postnatally, presumably in association with maturation of ventricular recoil and relaxation mechanisms.  相似文献   

4.
One of the most debilitating effects of primary aging is the decline in aerobic exercise capacity. One of its causes is an age-related decline in peak exercise stroke volume. This study's main purpose was to determine the cardiovascular adaptations to aging that most influence peak exercise stroke volume in the elderly. We hypothesized that increased left ventricular (LV) filling and mild concentric LV remodeling would be associated with an increase in peak exercise stroke volume corrected for lean body mass (LBM) and that an increased augmentation index (AI), which is a marker of arterial stiffness, would be associated with a decrease. A second aim was to determine the adaptations to aging that most influence LV concentric remodeling in the elderly. We hypothesized that AI would be a predictor of LV mass/LBM and the LV posterior wall thickness-to-LV radius ratio (h/r). We performed a cross-sectional study of cardiac and vascular adaptations to aging in 52 sedentary, elderly subjects. LV filling [as measured by the early-to-late transmitral flow velocity ratio (E/A)] was inversely correlated with and was an independent predictor of peak exercise stroke volume/LBM and was also a predictor of LV remodeling. AI was a predictor of LV remodeling (LV mass/LBM) but not of peak exercise stroke volume/LBM. We conclude that 1) maintenance of LV filling (E/A <1) is associated with a higher peak exercise stroke volume/LBM in very elderly subjects and thus may be a useful adaptation that enhances stroke volume during peak exercise, 2) LV remodeling and AI are less influential on peak exercise stroke volume/LBM, and 3) AI was the most important predictor of LV remodeling.  相似文献   

5.
Doppler ultrasound measures of left ventricular (LV) active relaxation and diastolic suction are slowed with healthy aging. It is unclear to what extent these changes are related to alterations in intrinsic LV properties and/or cardiovascular loading conditions. Seventy carefully screened individuals (38 female, 32 male) aged 21-77 were recruited into four age groups (young: <35; early middle age: 35-49; late middle age: 50-64 and seniors: ≥65 yr). Pulmonary capillary wedge pressure (PCWP), stroke volume, LV end-diastolic volume, and Doppler measures of LV diastolic filling were collected at multiple loading conditions, including supine baseline, lower body negative pressure to reduce LV filling, and saline infusion to increase LV filling. LV mass, supine PCWP, and heart rate were not affected significantly by aging. Measures of LV relaxation, including isovolumic relaxation time and the time constant of isovolumic pressure decay increased progressively, whereas peak early mitral annular longitudinal velocity decreased with advancing age (P < 0.001). The propagation velocity of early mitral inflow, a noninvasive measure of LV suction, decreased with aging with the greatest reduction in seniors (P < 0.001). Age-related differences in LV relaxation and diastolic suction were not attenuated significantly when PCWP was increased in older subjects or reduced in the younger subjects. There is an early slowing of LV relaxation and diastolic suction beginning in early middle age, with the greatest reduction observed in seniors. Because age-related differences in LV dynamic diastolic filling parameters were not diminished significantly with significant changes in LV loading conditions, a decline in ventricular relaxation is likely responsible for the alterations in LV diastolic filling with senescence.  相似文献   

6.
Glaucoma is associated with an increased incidence of cardiovascular disease and risk factors. The aim of the study was to assess the left ventricular (LV) function in patients with pseudoexfoliation (PEX) glaucoma using doppler-echocardiographic examinations. Two-dimensional and pulsed Doppler echocardiography of transmitral flow was performed in 21 patients with (PEX) glaucoma and 24 controls. LV systolic contraction and ejection were assessed using the LV ejection fraction (EF) and fractional shortening (FS). LV diastolic filling assessed parameters were: early, fast diastolic filling (E wave), late diastolic filling (A wave), ratio E/A, velocity time integral E wave (VTIE) and A wave (VTIA), their ratio (VTIE /VTIA), pressure at the end of filling (LVEDP) and a pulmonary capillary wedge pressure (PCWP). A significant difference was found concerning LV filling flow parameters in E, E/A, VTIA and ratio VTIA/ VTIE. No significant difference was found in EF, FS, A, VTIE, LVEDP and PCWP tested parameters. Our study indicates the possibility of slightly impaired diastolic function of LV in patients with PEX glaucoma assessed by Doppler-echocardiographic examinations.  相似文献   

7.
目的:探讨心脏彩超评估高血压左心室肥厚(LVH)伴左心衰竭患者心功能的临床价值,分析其超声指标与美国纽约心脏病协会(NYHA)分级的相关性。方法:选择2017年5月至2018年5月我院收治的127例高血压LVH伴左心衰竭患者为观察组,根据NYHA分级将其分为NYHAⅡ级组(41例)、Ⅲ级组(47例)、Ⅳ级组(39例),另选择100例体检的健康志愿者为对照组。所有受试者均接受心脏彩超获得相关参数[左心房内径(LAD)、左心室舒张末期内径(LVEDD)、左心室收缩末期内径(LVESD)、左心室短轴缩短率(LVFS)、左心室后壁厚度(LVPWT)、室间隔厚度(IVST)、左心室射血分数(LVEF)、左心室舒张早期充盈峰最大充盈速度/舒张晚期充盈峰最大峰值速度(E/A)比值、Tei指数],分析心脏彩超相关参数与NYHA分级之间相关性。结果:观察组患者LAD、LVEDD、LVESD、LVPWT、IVST、Tei指数高于对照组(P0.05),LVFS、LVEF、E/A比值低于对照组(P0.05)。Tei指数随着NYHA分级增高而增高(P0.05),LVFS、LVEF、E/A比值随着NYHA分级增高而降低(P0.05)。Spearman秩相关分析结果显示,Tei指数与NYHA分级呈正相关(rs=0.398,P0.05),LVFS、LVEF、E/A比值与NYHA分级呈负相关(rs=-0.285,-0.442,-0.305,P0.05)。结论:高血压LVH伴左心衰竭患者发生明显左室肥厚和左心功能降低,心脏彩超可准确评估高血压LVH伴左心衰竭患者的心功能和病情严重程度,且部分心脏彩超相关参数与NYHA分级相关。  相似文献   

8.
Changes in diastolic indexes during normal aging, including reduced early filling velocity (E), lengthened E deceleration time (DT), augmented late filling (A), and prolonged isovolumic relaxation time (IVRT), have been attributed to slower left ventricular (LV) pressure (LVP) decay. Indeed, this constellation of findings is often referred to as the "abnormal relaxation" pattern. However, LV filling is determined by the atrioventricular pressure gradient, which depends on both LVP decline and left atrial (LA) pressure (LAP). To assess the relative influence of LVP decline and LAP, we studied 122 normal subjects aged 21-92 yr by Doppler echocardiography and MRI. LVP decline was assessed by color M-mode (V(p)) and the LV untwisting rate. Early diastolic LAP was evaluated using pulmonary vein flow systolic fraction, pulmonary vein flow diastolic DT, color M-mode (E/V(p)), and tissue Doppler (E/E(m)). Linear regression showed the expected reduction of E, increase in A, and prolongation of IVRT and DT with advancing age. There was no relation of age to parameters reflecting the rate of LVP decline. However, older age was associated with reduced E/V(p) (P = 0.008) and increased pulmonary vein systolic fraction (P < 0.001), pulmonary vein DT (P = 0.0026), and E/E(m) (P < 0.0001), all suggesting reduced early LAP. Therefore, reduced early filling in older adults may be more closely related to a reduced early diastolic LAP than to slower LVP decline. This effect also explains the prolonged IVRT. We postulate that changes in LA active or passive properties may contribute to development of the abnormal relaxation pattern during the aging process.  相似文献   

9.
Pre-clinical animal models are important to study the fundamental biological and functional mechanisms involved in the longitudinal evolution of heart failure (HF). Particularly, large animal models, like nonhuman primates (NHPs), that possess greater physiological, biochemical, and phylogenetic similarity to humans are gaining interest. To assess the translatability of these models into human diseases, imaging biomarkers play a significant role in non-invasive phenotyping, prediction of downstream remodeling, and evaluation of novel experimental therapeutics. This paper sheds insight into NHP cardiac function through the quantification of magnetic resonance (MR) imaging biomarkers that comprehensively characterize the spatiotemporal dynamics of left ventricular (LV) systolic pumping and LV diastolic relaxation. MR tagging and phase contrast (PC) imaging were used to quantify NHP cardiac strain and flow. Temporal inter-relationships between rotational mechanics, myocardial strain and LV chamber flow are presented, and functional biomarkers are evaluated through test-retest repeatability and inter subject variability analyses. The temporal trends observed in strain and flow was similar to published data in humans. Our results indicate a dominant dimension based pumping during early systole, followed by a torsion dominant pumping action during late systole. Early diastole is characterized by close to 65% of untwist, the remainder of which likely contributes to efficient filling during atrial kick. Our data reveal that moderate to good intra-subject repeatability was observed for peak strain, strain-rates, E/circumferential strain-rate (CSR) ratio, E/longitudinal strain-rate (LSR) ratio, and deceleration time. The inter-subject variability was high for strain dyssynchrony, diastolic strain-rates, peak torsion and peak untwist rate. We have successfully characterized cardiac function in NHPs using MR imaging. Peak strain, average systolic strain-rate, diastolic E/CSR and E/LSR ratios, and deceleration time were identified as robust biomarkers that could potentially be applied to future pre-clinical drug studies.  相似文献   

10.
We aimed to quantify kinetic energy (KE) during the entire cardiac cycle of the left ventricle (LV) and right ventricle (RV) using four-dimensional phase-contrast magnetic resonance imaging (MRI). KE was quantified in healthy volunteers (n = 9) using an in-house developed software. Mean KE through the cardiac cycle of the LV and the RV were highly correlated (r(2) = 0.96). Mean KE was related to end-diastolic volume (r(2) = 0.66 for LV and r(2) = 0.74 for RV), end-systolic volume (r(2) = 0.59 and 0.68), and stroke volume (r(2) = 0.55 and 0.60), but not to ejection fraction (r(2) < 0.01, P = not significant for both). Three KE peaks were found in both ventricles, in systole, early diastole, and late diastole. In systole, peak KE in the LV was lower (4.9 ± 0.4 mJ, P = 0.004) compared with the RV (7.5 ± 0.8 mJ). In contrast, KE during early diastole was higher in the LV (6.0 ± 0.6 mJ, P = 0.004) compared with the RV (3.6 ± 0.4 mJ). The late diastolic peaks were smaller than the systolic and early diastolic peaks (1.3 ± 0.2 and 1.2 ± 0.2 mJ). Modeling estimated the proportion of KE to total external work, which comprised ~0.3% of LV external work and 3% of RV energy at rest and 3 vs. 24% during peak exercise. The higher early diastolic KE in the LV indicates that LV filling is more dependent on ventricular suction compared with the RV. RV early diastolic filling, on the other hand, may be caused to a higher degree of the return of the atrioventricular plane toward the base of the heart. The difference in ventricular geometry with a longer outflow tract in the RV compared with the LV explains the higher systolic KE in the RV.  相似文献   

11.
The purpose of this study was to investigate the role of osteopontin (OPN) in diabetic hearts. Diabetes was induced in wild-type (WT) and OPN knockout (KO) mice by using streptozotocin (150 mg/kg) injection. Left ventricular (LV) structural and functional remodeling was studied 30 and 60 days after induction of diabetes. Induction of diabetes increased OPN expression in cardiac myocytes. Heart weight-to-body weight ratio was increased in both diabetic (D) groups. Lung wet weight-to-dry weight ratio was increased only in the WT-D group. Peak left ventricular (LV) developed pressures measured using Langendorff perfusion analyses were reduced to a greater extent in WT-D versus KO-D group. LV end-diastolic pressure-volume curve exhibited a significant leftward shift in WT-D but not in KO-D group. LV end-diastolic diameter, percent fractional shortening, and the ratio of peak velocity of early and late filling (E/A wave) were significantly reduced in WT-D mice as analyzed by echocardiography. The increase in cardiac myocyte apoptosis and fibrosis was significantly higher in the WT-D group. Expression of atrial natriuretic peptide and transforming growth factor-beta1 was significantly increased in the WT-D group. Induction of diabetes increased protein kinase C (PKC) phosphorylation in both groups. However, phosphorylation of PKC-betaII was significantly higher in the WT-D group, whereas phosphorylation of PKC-zeta was significantly higher in the KO-D group. Levels of peroxisome proliferator-activated receptor-gamma were significantly decreased in the WT-D group but not in the KO-D group. Thus increased expression of OPN may play a deleterious role during streptozotocin-induced diabetic cardiomyopathy with effects on cardiac fibrosis, hypertrophy, and myocyte apoptosis.  相似文献   

12.
Left ventricular (LV) diastolic function during atrial fibrillation (AF) remains poorly understood due to the complex interaction of factors and beat-to-beat variability. The purpose of the present study was to elucidate the physiological determinants of beat-to-beat changes in LV diastolic function during AF. The RR intervals preceding a given cardiac beat were measured from the right ventricular electrogram in 12 healthy open-chest mongrel dogs during AF. Doppler echocardiography and LV pressure and volume beat-to-beat analyses were performed. The LV filling time (FT) and early diastolic mitral inflow velocity-time integral (E(vti)) were measured using the pulsed Doppler method. The LV end-diastolic volume (EDV), peak systolic LV pressure (LVP), minimum value of the first derivative of LV pressure curve (dP/dt(min)), and the time constant of LV pressure decay (tau) were evaluated with the use of a conductance catheter for 100 consecutive cardiac cycles. Beat-to-beat analysis revealed a cascade of important causal relations. LV-FT showed a significant positive linear relationship with E(vti) (r = 0.87). Importantly, there was a significant positive linear relationship between the RR interval and LV-EDV in the same cardiac beat (r = 0.53). Consequently, there was a positive linear relationship between LV-EDV and subsequent peak systolic LVP (r = 0.82). Furthermore, there were significant positive linear and negative curvilinear relationships between peak systolic LVP and dP/dt(min) (r = 0.95) and tau (r = -0.85), respectively, in the same cardiac beat. In addition, there was a significant negative curvilinear relationship between dP/dt(min) and tau (r = -0.86). We have concluded that the determinants of LV diastolic function in individual beats during AF depend strongly on the peak systolic LVP. This suggests that the major benefit of slower ventricular rate appears related to lengthening of LV filling interval, promoting subsequent higher peak systolic LVP and greater LV relaxation.  相似文献   

13.
Increased dietary salt intake induces cardiac fibrosis in the spontaneously hypertensive rat (SHR), yet little information details its effects on left ventricular (LV) function. Additionally, young normotensive rats are more sensitive to the trophic effect of dietary sodium than older rats. Thus cardiac responses to salt loading were evaluated at two ages in the SHR; LV collagen content was also examined. SHR (8 or 20 wk of age) were given an 8% salt diet; their age-matched controls received standard chow. Echocardiographic indexes, arterial pressure, and LV hydroxyproline concentration were measured at 16 and 52 wk in the younger and older SHR groups, respectively. In most SHR, salt excess increased arterial pressure, LV mass, and hydroxyproline concentration and impaired LV relaxation manifested by prolonged isovolumic relaxation time, decreased early and atrial filling velocity ratio (V(E)/V(A)), and slower propagation velocity of E wave (V(P)). LV systolic function remained normal. However, one-quarter of the young salt-loaded SHR developed cardiac failure with systolic and diastolic dysfunction associated with greater LV mass and ventricular fibrosis. They also had lower arterial pressure, decreased fractional shortening, and a restrictive pattern of mitral flow. Moreover, the shorter deceleration time of the E wave and increased V(E)/V(P), an index of LV filling pressure, indicated increased LV stiffness in these rats. These findings demonstrated that sodium sensitivity in SHR is manifested not only by further pressure elevation but also by significant LV functional impairment that most likely is related to enhanced ventricular fibrosis. Moreover, the SHR are more susceptible to cardiac damage when high dietary salt is introduced earlier in life.  相似文献   

14.
We studied the acute effect of high-intensity interval exercise on biventricular function using cardiac magnetic resonance imaging in nine patients [age: 49 ± 16 yr; left ventricular (LV) ejection fraction (EF): 35.8 ± 7.2%] with nonischemic mild heart failure (HF). We hypothesized that a significant impairment in the immediate postexercise end-systolic volume (ESV) and end-diastolic volume (EDV) would contribute to a reduction in EF. We found that immediately following acute high-intensity interval exercise, LV ESV decreased by 6% and LV systolic annular velocity increased by 21% (both P < 0.05). Thirty minutes following exercise (+30 min), there was an absolute increase in LV EF of 2.4% (P < 0.05). Measures of preload, left atrial volume and LV EDV, were reduced immediately following exercise. Similar responses were observed for right ventricular volumes. Early filling velocity, filling rate, and diastolic annular velocity remained unchanged, while LV untwisting rate increased 24% immediately following exercise (P < 0.05) and remained 18% above baseline at +30 min (P < 0.05). The major novel findings of this investigation are 1) that acute high-intensity interval exercise decreases the immediate postexercise LV ESV and increases LV EF at +30 min in patients with mild HF, and this is associated with a reduction in LV afterload and maintenance of contractility, and 2) that despite a reduction in left atrial volume and LV EDV immediately postexercise, diastolic function is preserved and may be modulated by enhanced LV peak untwisting rate. Acute high-intensity interval exercise does not impair postexercise biventricular function in patients with nonischemic mild HF.  相似文献   

15.
Cardiovascular transgenic mouse models with an early phenotype or even premature death require noninvasive imaging methods that allow for accurate visualization of cardiac morphology and function. Thus the purpose of our study was to assess the feasibility of magnetic resonance imaging (MRI) to characterize cardiac function and mass in newborn, juvenile, and adult mice. Forty-five C57bl/6 mice from seven age groups (3 days to 4 mo after birth) were studied by MRI under isoflurane anesthesia. Electrocardiogram-gated cine MRI was performed with an in-plane resolution of (78-117 microm)(2). Temporal resolution per cine frame was 8.6 ms. MRI revealed cardiac anatomy in mice from all age groups with high temporal and spatial resolution. There was close correlation between MRI- and autopsy-determined left ventricular (LV) mass (r = 0.95, SE of estimate = 9.5 mg). The increase of LV mass (range 9.6-101.3 mg), cardiac output (range 1.1-14.3 ml/min), and stroke volume (range 3. 2-40.2 microl) with age could be quantified by MRI measurements. Ejection fraction and cardiac index did not change with aging. However, LV mass index decreased with increasing age (P < 0.01). High-resolution MRI allows for accurate in vivo assessment of cardiac function in neonatal, juvenile, and adult mice. This method should be useful when applied in transgenic mouse models.  相似文献   

16.
Shortened early transmitral deceleration times (E(DT)) have been qualitatively associated with increased filling pressure and reduced survival in patients with cardiac disease and increased left ventricular operating stiffness (K(LV)). An equation relating K(LV) quantitatively to E(DT) has previously been described in a canine model but not in humans. During several varying hemodynamic conditions, we studied 18 patients undergoing open-heart surgery. Transesophageal echocardiographic two-dimensional volumes and Doppler flows were combined with high-fidelity left atrial (LA) and left ventricular (LV) pressures to determine K(LV). From digitized Doppler recordings, E(DT) was measured and compared against changes in LV and LA diastolic volumes and pressures. E(DT) (180 +/- 39 ms) was inversely associated with LV end-diastolic pressures (r = -0.56, P = 0.004) and net atrioventricular stiffness (r = -0.55, P = 0.006) but had its strongest association with K(LV) (r = -0.81, P < 0.001). K(LV) was predicted assuming a nonrestrictive orifice (K(nonrest)) from E(DT) as K(nonrest) = (0.07/E(DT))(2) with K(LV) = 1.01 K(nonrest) - 0.02; r = 0.86, P < 0.001, DeltaK (K(nonrest) - K(LV)) = 0.02 +/- 0.06 mm Hg/ml. In adults with cardiac disease, E(DT) provides an accurate estimate of LV operating stiffness and supports its application as a practical noninvasive index in the evaluation of diastolic function.  相似文献   

17.
Cardiac troponin I (TnI) knockout mice exhibit a phenotype of sudden death at 17-18 days after birth due to a progressive loss of TnI. The objective of this study was to gain insight into the physiological consequences of TnI depletion and the cause of death in these mice. Cardiac function was monitored serially between 12 and 17 days of age by using high-resolution ultrasonic imaging and Doppler echocardiography. Two-dimensional B-mode and anatomical M-mode imaging and Doppler echocardiography were performed using a high-frequency ( approximately 20-45 MHz) ultrasound imaging system on homozygous cardiac TnI mutant mice (cTnI(-/-)) and wild-type littermates. On day 12, cTnI(-/-) mice were indistinguishable from wild-type mice in terms of heart rate, atrial and LV (LV) chamber dimensions, LV posterior wall thickness, and body weight. By days 16 through 17, wild-type mice showed up to a 40% increase in chamber dimensions due to normal growth, whereas cTnI(-/-) mice showed increases in atrial dimensions of up to 97% but decreases in ventricular dimensions of up to 70%. Mitral Doppler analysis revealed prolonged isovolumic relaxation time and pronounced inversion of the mitral E/A ratio (early ventricular filling wave-to-late atrial contraction filling wave) only in cTnI(-/-) mice indicative of impaired LV relaxation. cTnI(-/-) mouse hearts showed clear signs of failure on day 17, characterized by >50% declines in cardiac output, ejection fraction, and fractional shortening. B-mode echocardiography showed a profoundly narrowed tube-like LV and enlarged atria at this time. Our data are consistent with TnI deficiency causing impaired LV relaxation, which leads to diastolic heart failure in this model.  相似文献   

18.
目的:探讨胸内正压对正常人左室射血及充盈的影响及其力学原理。方法:超声心动图观测30例正常人初始时与标准乏氏动作张力期10s时左室舒张末容积(LVEDV)、左室收缩末容积(LVESV)、每搏量(SV)、射血分值(EF)、流入道血流速度(E峰、A峰)、E/A值、二尖瓣环舒张早期运动速度(e)及舒张早期充盈压(E/e)的变化。结果:与初始时比较,标准乏氏动作张力期LVEDV、LVESV及SV减低而心率(陬)增快(P均〈0.001),EF值增加,但无统计学意义(P〉0.05);E峰与E/A值减低(P均〈O.05);e没有变化(P〉0.05).E/e值减低(P〈O.05)。结论:胸内正压对左室游离壁的力学作用促进了左室收缩运动而阻碍了左室舒张运动,会引起EF值增加,E峰及E/A值减低;2,胸内正压降低了肺静脉系统与心脏的跨壁压力,增加了血流阻力也是导致肺静脉系统与左室血液回流减少.E峰减低.E/e值减低的一个原因。  相似文献   

19.
Mutations in the cardiac myosin heavy chain (MHC) can cause familial hypertrophic cardiomyopathy (FHC). A transgenic mouse model has been developed in which a missense (R403Q) allele and an actin-binding deletion in the alpha-MHC are expressed in the heart. We used an isovolumic left heart preparation to study the contractile characteristics of hearts from transgenic (TG) mice and their wild-type (WT) littermates. Both male and female TG mice developed left ventricular (LV) hypertrophy at 4 mo of age. LV hypertrophy was accompanied by LV diastolic dysfunction, but LV systolic function was normal and supranormal in the young TG females and males, respectively. At 10 mo of age, the females continued to present with LV concentric hypertrophy, whereas the males began to display LV dilation. In female TG mice at 10 mo of age, impaired LV diastolic function persisted without evidence of systolic dysfunction. In contrast, in 10-mo-old male TG mice, LV diastolic function worsened and systolic performance was impaired. Diminished coronary flow was observed in both 10-mo-old TG groups. These types of changes may contribute to the functional decompensation typically seen in hypertrophic cardiomyopathy. Collectively, these results further underscore the potential utility of this transgenic mouse model in elucidating pathogenesis of FHC.  相似文献   

20.
Our goal was to establish normal values for quantitative color kinesis indexes of left ventricular (LV) wall motion over a wide range of ages, which are required for objective diagnosis of regional systolic and diastolic dysfunction. Color-encoded images were obtained in 194 normal subjects (95 males, 99 females, age 2 mo to 79 yr) in four standard views. Quantitative indexes of magnitude and timing of systolic and diastolic function were studied for age- and gender-related differences. Normal limits of all ejection and filling indexes were in a narrow range (< or =25% of the mean), with no major gender-related differences. Despite invariable ejection fractions, both peak filling and ejection rates decreased with age (30 and 20%, correspondingly) with a concomitant increase in mean filling and ejection times, resulting in five- and twofold increases in the late to early filling and ejection ratios, correspondingly. Diastolic asynchrony increased with age (from 4.7 +/- 2.0 to 6.4 +/- 3.2 from the 2nd to 7th decade). The normal values of color kinesis indexes should allow objective detection of regional LV systolic and diastolic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号