首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.  相似文献   

2.
Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for wing motion as a warning signal, aposematic butterflies should maintain wing motion independently of behavioural context. Members of one mimicry group (Heliconius cydno and Heliconius sapho) beat their wings more slowly and their wing strokes were more asymmetric than their sister-species (Heliconius melpomene and Heliconius erato, respectively), which were members of another mimicry group having a quick and steady wing motion. Within mimicry groups, wing beat frequency declined as its role in generating lift also declined in different behavioural contexts. In contrast, asymmetry of the stroke was not associated with wing beat frequency or behavioural context-strong indication that birds process and store the Fourier motion energy of butterfly wings. Although direct evidence that birds respond to subtle differences in butterfly wing motion is lacking, birds appear to generalize a motion pattern as much as they encounter members of a mimicry group in different behavioural contexts.  相似文献   

3.
The swallowtail butterfly Papilio polytes is known for its striking resemblance in wing pattern to the toxic butterfly Pachliopta aristolochiae and is a focal system for the study of mimicry evolution. Papilio polytes females are polymorphic in wing pattern, with mimetic and nonmimetic forms, while males are monomorphic and nonmimetic. Past work invokes selection for mimicry as the driving force behind wing pattern evolution in P. polytes. However, the mimetic relationship between P. polytes and P. aristolochiae is not well understood. In order to test the mimicry hypothesis, we constructed paper replicas of mimetic and nonmimetic P. polytes and P. aristolochiae, placed them in their natural habitat, and measured bird predation on replicas. In initial trials with stationary replicas and plasticine bodies, overall predation was low and we found no differences in predation between replica types. In later trials with replicas mounted on springs and with live mealworms standing in for the butterfly's body, we found less predation on mimetic P. polytes replicas compared to nonmimetic P. polytes replicas, consistent with the predator avoidance benefits of mimicry. While our results are mixed, they generally lend support to the mimicry hypothesis as well as the idea that behavioral differences between the sexes contributed to the evolution of sexually dimorphic mimicry.  相似文献   

4.
The origin and evolution of supergenes have long fascinated evolutionary biologists. In the polymorphic butterfly Heliconius numata, a supergene controls the switch between multiple different forms, and results in near-perfect mimicry of model species. Here, we use a morphometric analysis to quantify the variation in wing pattern observed in two broods of H. numata with different alleles at the supergene locus, 'P'. Further, we genotype the broods to associate the variation we capture with genetic differences. This allows us to begin mapping the quantitative trait loci that have minor effects on wing pattern. In addition to finding loci on novel chromosomes, our data, to our knowledge, suggest for the first time that ancestral colour-pattern loci, known to have major effects in closely related species, may contribute to the wing patterns displayed by H. numata, despite the large transfer of effects to the supergene.  相似文献   

5.
The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possible to recognize homologies among pattern elements and to study their evolution and diversification. Individuated pattern elements evolved from non-individuated precursors by compartmentalization of the wing into areas that became developmentally autonomous with respect to color pattern formation. Developmental compartmentalization led to the evolution of serially repeated elements and the emergence of serial homology. In these compartments, serial homologues were able to acquire site-specific developmental regulation and this, in turn, allowed them to diverge morphologically. Compartmentalization of the wing also reduced the developmental correlation among pattern elements. The release from this developmental constraint, we believe, enabled the great evolutionary radiation of butterfly wing patterns. During pattern evolution, the same set of individual pattern elements is arranged in novel ways to produce species-specific patterns, including such adaptations as mimicry and camouflage.  相似文献   

6.
丝带凤蝶滞育与非滞育蛹及其成虫的形态学观察   总被引:3,自引:0,他引:3  
丝带凤蝶Sericinus montelus是一种有开发价值的观赏昆虫,以蛹滞育越冬,成虫存在多型现象。本研究从体色、个体大小和蛹腹部刺突长度等方面比较了丝带凤蝶滞育与非滞育蛹及其成虫的形态差异。与非滞育蛹相比,滞育蛹体色较深,触角末端的淡黄色与体色差异明显,3日龄滞育蛹腹部第9节刺突长度是3日龄非滞育蛹的4倍左右,这些差异可以用于该虫蛹滞育早期判别。滞育蛹羽化成虫的翅展和尾突长度显著小于非滞育蛹羽化成虫,且腹部及翅面斑纹也存在明显的差异,这些差异与丝带凤蝶春型、夏型成虫的描述相一致,表明丝带凤蝶成虫季节多型是与滞育相关联的。  相似文献   

7.
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.  相似文献   

8.
SUMMARY Heliconius butterfly wing patterns show repeated convergence between species and have adaptive value in mimicry and mate choice, offering an opportunity to connect adaptive changes in phenotype with their underlying genotypes. Here we study forewing ommochrome pigmentation in Heliconius melpomene . We clone two new ommochrome pathway genes for the Lepidoptera, karmoisin and kynurenine formamidase ( kf  ), and analyze the expression patterns of all known ommochrome genes across pupal wing development. In combination with published work, this generates the first comparative gene expression data for the co-mimics Heliconius erato and H. melpomene . In both species cinnabar expression correlates with the forewing band, but the expression pattern of vermillion differs significantly between the mimics. This demonstrates that both shared and divergent expression patterns are associated with mimetic phenotypes between Heliconius species. Two genes not studied in H. erato, scarlet and possibly kf , also show enhanced expression in the forewing band of H. melpomene , implying co-ordinated upregulation of several members of this biosynthetic pathway during pattern formation.  相似文献   

9.
10.
The butterfly Papilio dardanus is well known for the spectacular phenotypic polymorphism in the female of the species. We show that numerical simulations of a reaction diffusion model on a geometrically accurate wing domain produce spatial patterns that are consistent with many of those observed on the butterfly. Our results suggest that the wing coloration is due to a simple underlying stripe-like pattern of some pigment-inducing morphogen. We focus on the effect of key factors such as parameter values for mode selection, threshold values which determine colour, wing shape and boundary conditions. The generality of our approach should allow us to investigate other butterfly species. The relationship between these key factors and gene activities is discussed in the context of recent biological advances.  相似文献   

11.
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced‐complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over‐represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini ‐ the largest radiation of mimetic butterflies.  相似文献   

12.
The evolution of butterfly wing colouration is strongly affected by its multiple functions and by the correlated evolution of wing colour elements. Both factors may prevent local adaptation to ecological conditions. We investigated one aspect of wing colouration, the degree of dorsal wing melanization, in the butterfly Colias philodice eriphyle across an elevational gradient and its correlation with another aspect of wing colouration, ventral wing melanization. Dorsal wing melanization increased with elevation and these differences persisted in a common environment. Full-sibling analysis revealed high heritability for males but only intermediate heritability for females. The correlation between ventral and dorsal melanization showed significant elevational and sex-specific differences. In males the two traits were highly correlated, whereas in females the strength of the correlation decreased with increasing elevation. We conclude that uncoupling of ventral and dorsal melanization has evolved in females but not in males and discuss possible mechanisms underlying uncoupling.  相似文献   

13.
14.
The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018–2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.  相似文献   

15.
The component parts of butterfly wing patterns are arranged in sets of serially homologous pattern elements, repeated from wing cell to wing cell. Measurements were made on the sizes and positions of these elements on two successive, independent, sets of specimens in order to elucidate the phenotypic correlation structure among pattern elements. That portion of the correlation between measures due to overall size variation was accounted for through two alternate methods: multiple regression on two vein length measures, which represent wing size, and a Wright-style factor analysis. The sizes of pattern elements belonging to a homologous series were found to be significantly correlated whereas those of non-homologous elements varied independently. The degree of correlation among homologs varied, and, in the case of eyespot sizes, appeared to be inversely related to the degree of their morphological divergence. Although not correlated in size, the positions of non-homologous elements that lie within the same wing cell are moderately correlated. The results support current developmental models for the ontogeny of butterfly color pattern.  相似文献   

16.
Abstract The almost exclusively Neotropical butterfly family Riodinidae is poorly represented in both ecological and systematic studies of Lepidoptera. A comparative morphological study of all seventy-five species in subtribe Theopeina (tribe Nymphidiini) yielded 104 characters, predominantly from wing pattern, male and female genitalia, and abdominal structures. All morphological characters and adults representing the range of wing pattern variation are illustrated. Phylogenetic analysis of the data produced a large number of most parsimonious cladograms, but the strict consensus of these, both when using equal weights and after successive weighting, is well resolved and the majority of terminal clades have high character and branch support. Theopeina is found to consist of five monophyletic genera, Protonymphidia , Archaeonympha , Calicosama , Behemothia and Theope (=  Parnes and Dinoplotis ), with the largest genus Theope containing thirteen monophyletic species groups, which are delineated to facilitate a discussion of broad evolutionary patterns in this morphologically diverse subtribe.  相似文献   

17.
18.
Mutants highlight the modular control of butterfly eyespot patterns   总被引:1,自引:0,他引:1  
SUMMARY The eyespots on butterfly wings are thought to be serially homologous pattern elements. Yet eyespots differ greatly in number, shape, color, and size, within and among species. To what extent do these serially homologues have separate developmental identities, upon which selection acts to create diversity? We examined x‐ray–induced mutations for the eyespots of the nymphalid butterfly Bicyclus anynana that highlight the modular control of these serially homologous wing pattern elements. These mutations reduce or eliminate individual eyespots, or groups of eyespots, with no further effect on the wing color pattern. The collection of mutants highlights a greater potential developmental repertoire than that observed across the genus Bicyclus. We studied in detail one such mutation, of codominant effect, that causes the elimination of two adjacent eyespots on the ventral hindwing. By analyzing the expression of genes known to be involved in eyespot formation, we found an alteration in the differentiation of the “organizing” cells at the eyespot's center. No such cells differentiate in the wing subdivisions lacking the two eyespots in the mutants. We propose several developmental models, based on wing compartmentalization in Drosophila, that provide the first framework for thinking about the molecular evolution of butterfly wing pattern modularity.  相似文献   

19.
Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color‐pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark‐based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing‐shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号