首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Diandric and digynic triploid mouse embryos were isolated in the morning on day 10 of gestation. The embryos were separated from their extraembryonic membranes, and the latter were analysed cytogenetically by G-banding to establish the ploidy and sex chromosome constitution of these embryos. The diandric triploid embryos were produced by the technique of nuclear micromanipulation. Females were mated with male mice with a morphologically distinguishable "marker" chromosome to confirm the diandric status of these embryos. Digynic triploid and normal diploid embryos were isolated from LT/Sv strain females. These females spontaneously ovulate both primary and secondary oocytes, which are fertilisable and give rise to digynic triploid and normal diploid embryos, respectively. All the embryos were serially sectioned and processed in order to demonstrate the presence of alkaline phosphatase enzyme activity. This histochemical technique allowed primordial germ cells to be readily recognised, due to their characteristic location, cellular morphology, and staining appearance. Primordial germ cells were found in all the embryos studied, being located within the visceral yolk sac, at the base of the allantois, and/or in association with the wall or mesentery of the hindgut. The total number of germ cells present was established in nine diandric triploids and in five digynic triploids. The findings presented here represent the first demonstration that primordial germ cells can differentiate in either diandric or digynic triploid mammalian embryos.  相似文献   

2.
The migrating primordial germ cells in mouse embryos aged between 8.5 and 11 days were identified under the light and electron microscopes by means of localizing alkaline phosphatase activity, and their ultrastructure was studied. Most of the migrating primordial germ cells were round with smooth contour; they were invariably in close contact with irregularly shaped surrounding cells. The ultrastructural characteristics of early primordial germ cells included: prominent nucleoli, cytoplasmic protrusions into the nuclei, Golgi complexes with alkaline phosphatase activity, disappearance of granular endoplasmic reticulum with increasing age of the embryos, dense cytoplasm with extremely abundant ribosomes, and cytoplasmic dense granules. The significance of these findings is discussed in relation to the origin and migration of mouse primordial germ cells.  相似文献   

3.
人多潜能胚胎生殖细胞的分离和培养(简报)   总被引:1,自引:0,他引:1  
To establish human pluripotent embryonic germ (EG) cell lines, human primordial germ cells (PGCs) of embryos aborted in 5-9 week were cultured on inactive mouse STO fibroblast feeder. The medium contained human leukemia inhibitory factor (hLIF), human basic fibroblast growth factor (hbFGF) and forskolin. The EG cells could be passaged continuously until 12 generations. Most cells were positive in alkaline phosphatase staining and expressed cell surface antigen SSEA-3 and pluripotent marker Oct-4. These EG cell populations that retained normal karyotype could form embryoid body in culture and differentiate further into neuron-like cells, mucous epithelial cells, epithelial cells and other types of the cells spontaneously. These results indicated the cell clones derived from human PGCs resemble pluripotent EG cells from mouse PGCs in appearance or nature.  相似文献   

4.
多潜能胚胎性干细胞来源有两条途经,从植入前的早期胚胎内细胞团(inner cell mass,ICM)分离出来的称胚胎干细胞(embryonic stem cells,ES);从原始生殖细胞(primordial germ cells,PGCs)分离得到的称胚胎生殖细胞(embryonic germ cells,EG)。这两种干细胞在小鼠嵌合体实验中,都证明具有参与生殖系传递的能力。这类干细胞在体外保持  相似文献   

5.
Smad5 is required for mouse primordial germ cell development   总被引:9,自引:0,他引:9  
Smad5, together with Smad1 and Smad8, have been implicated as downstream signal mediators for several bone morphogenetic proteins (BMPs). Recent studies have shown that primordial germ cells (PGCs) are absent or greatly reduced in Bmp4 or Bmp8b mutant mice. To define the role of Smad5 in PGC development, we examined PGC number in Smad5 mutant mice by Oct4 whole-mount in situ hybridization and alkaline phosphatase staining. We found ectopic PGC-like cells in the amnion of some Smad5 mutant mice, however, the total number of PGCs was greatly reduced or completely absent in Smad5 mutant embryos, similar to Bmp4 or Bmp8b mutant embryos. Therefore, Smad5 is an important factor involved in PGC generation and localization.  相似文献   

6.
Embryonic germ (EG) cells are cultured pluripotent stem cells derived from the primordial germ cells (PGCs) that migrate from the dorsal mesentery of the hindgut to the developing genital ridge. In this study, the morphology of the porcine genital ridge was assessed in embryos harvested on days 22–30 of pregnancy. PGCs from embryos at these stages were cultured to obtain porcine EG cell lines, and EG-like cells were derived from PGCs from embryos harvested on days 24–28 of pregnancy. The EG-like cells expressed Oct4, Sox2, Nanog, SSEA-3, SSEA-4 and alkaline phosphatase (AP). These cells were able to form embryoid bodies (EBs) in suspension culture and differentiate into cells representative of the three germ layers as verified by a-fetoprotein (AFP), α-smooth muscle actin (α-SMA), and Nestin expression. Spontaneous differentiation from the porcine EG-like cells of delayed passage in vitro showed that they could differentiate into epithelial-like cells, mesenchymal-like cells and neuron-like cells. In vitro directed differentiation generated osteocytes, adipocytes and a variety of neural lineage cells, as demonstrated by alizarin red staining, oil red O staining, and immunofluorescence for neuronal class Ⅲ β-tubulin (Tuj1), glial fibrillary protein (GFAP) and galactosylceramidase (GALC), respectively. These results indicate that porcine EG-like cells have the potential for multi-lineage differentiation and are useful for basic porcine stem cell research.  相似文献   

7.
P P Tam  W K Liu 《Teratology》1985,32(3):453-462
Gonadal development was studied in mouse embryos that were exposed to cadmium during the early organogenesis stages. At 13.5 days, both the male and the female embryos had small genital ridges. Fewer primordial germ cells were found in the male embryos. In both sexes, many primordial germ cells were left outside the genital ridges, presumably as a result of retarded cell migration. In 16.5-day embryos, the size of the testes and ovaries and the number of differentiating germ cells were reduced. Many germ cells degenerated during the differentiation to spermatogonia and meiotic oocytes. The perturbed gonadal development was less likely to be caused primarily by a defective hypothalamopituitary axis but was more a part of the general cadmium-induced damage. The fertility of the male offspring was impaired by the prenatal cadmium insult, but the females were apparently fertile. The epididymal spermatozoa of the cadmium-affected offspring showed a lower fertilizing capacity in vitro. The impaired fertility of the cadmium-affected mice was the result of poor gonadal growth, paucity of germ cells, and defective maturation of the gametes.  相似文献   

8.
M Wide 《Teratology》1985,32(3):375-380
Female mice were exposed to lead in utero by intravenous injection of lead chloride into the mothers at different stages of pregnancy. At a mature age the mice exposed as fetuses (F1 generation) conceived at a normal rate, but the litter size and fetal survival varied significantly. Small litters and increased numbers of fetal deaths were observed in mice exposed to lead on day 8 of intrauterine life. The live fetuses in this group were normal with respect to weight and morphological appearance. Serum levels of estradiol and progesterone, measured on day 17 of pregnancy, did not differ significantly between F1 mice of a control, unexposed group and of the group exposed to lead on day 8 of intrauterine life. Ovarian follicle counts revealed a significantly smaller number of primordial follicles in the latter group. It is suggested that the exposure to lead at a time of early organogenesis caused the observed fertility decrease by interfering with the development of the female germ cells.  相似文献   

9.
Using fluorescence-activated cell sorting combined with fluorescence microscopy the mechanism of embryonic germ cell death in the mouse has been shown to be apoptosis. Primordial germ cells (PGCs) from embryos at specific developmental stages have been analyzed, and cells with apoptotic morphology have been isolated by cell sorting. In the female, apoptotic oogonia at Day 13 and apoptotic oocytes at Days 15 and 17 were found. In the male, apoptotic cells were seen on Day 13 through Day 17. Apoptotic germ cells were not detected at Day 12 (combined male and female PGCs). Examination of sorted cells by fluorescence microscopy and by light microscopic analysis after alkaline phosphatase staining confirmed that the cells are apoptotic germ cells. Electron microscopy further confirmed that cells showing the morphological characteristics of apoptosis are present.  相似文献   

10.
Immunodetections of carbohydrate surface antigens were carried out for SSEA-1 and SSEA-3. Using alkaline phosphatase for the detection of primordial germ cells these surface antigens were detected at the cell membrane and the cytoplasm of the germ cells at E 10.  相似文献   

11.
Tissue nonspecific alkaline phosphatase (TNAP), the product of theAkp2locus, is expressed in mouse primordial germ cells (PGC) for an extensive period during embryogenesis. Mice with theAkp2tm1Sormutant allele of TNAP expresslacZ(β-galactosidase; β-gal) under control of theAkp2locus. PGCs were purified fromAkp2tm1Sorembryos using fluorescence activated cell sorting of β-gal expressing cells (FACS-gal). Analysis of the purified cells by alkaline phosphatase staining and immunocytochemistry with anti-c-kitantibody demonstrated that highly (98%) purified PGCs can be isolated using this method. This technique will facilitate experiments that require highly purified preparations of PGCs including cell culture and gene expression analyses.  相似文献   

12.
Whether all descendants of germline founder cells inheriting the germ plasm can migrate correctly to the genital ridges and differentiate into primordial germ cells (PGCs) at tadpole stage has not been elucidated in Xenopus. We investigated precisely the location of descendant cells, presumptive primordial germ cells (pPGCs) and PGCs, in embryos at stages 23-48 by whole-mount in situ hybridization with the antisense probe for Xpat RNA specific to pPGCs and whole-mount immunostaining with the 2L-13 antibody specific to Xenopus Vasa protein in PGCs. Small numbers of pPGCs and PGCs, which were positively stained with the probe and the antibody, respectively, were observed in ectopic locations in a significant number of embryos at those stages. A few of the ectopic PGCs in tadpoles at stages 44-47 were positive in TdT-mediated dUTP digoxigenin nick end labeling (TUNEL) staining. By contrast, pPGCs in the embryos until stage 40, irrespective of their location and PGCs in the genital ridges of the tadpoles at stages 43-48 were negative in TUNEL staining. Therefore, it is evident that a portion of the descendants of germline founder cells cannot migrate correctly to the genital ridges, and that a few ectopic PGCs are eliminated by apoptosis or necrosis at tadpole stages.  相似文献   

13.
An attempt has been made to improve the early post-implantation development potential of diploid parthenogenetic mouse embryos by transferring parthenogenetic blastocysts to one uterine horn of a pseudopregnant recipient and a similar number of fertilized embryos to the contralateral horn. In control studies, diploid parthenogenetic embryos were transferred to both uterine horns of appropriate recipients. Unfortunately no obvious advantage appeared to be gained by carrying out the former manoeuvre. A significant improvement in the development potential of the parthenogenones could have indicated that their poor post-implantation survival might have been associated with a deficiency, possibly of hormonal origin, in the functioning of their decidual reaction. However, sufficient somite-containing parthenogenetic embryos were obtained in this study to allow a comparison to be made between them and fertilized embryos that were morphologically at a comparable stage of development. The parthenogenones were found to have a markedly smaller crown-rump length than their fertilized counterparts. A high proportion of both the parthenogenetic and fertilized embryos were subsequently fixed and appropriately stained in order to localize alkaline phosphatase activity. The analysis of this material clearly demonstrated that parthenogenetic mouse embryos are in fact capable of producing primordial germ cells. The latter were recognized by their morphology, histochemical staining appearance, and characteristic location, being found in the early 'turned' embryos within the dorsal mesentery in close proximity to the developing gut tube, and in the more advanced limb-bud stage embryos within the gonadal ridges.  相似文献   

14.
We describe a fluorescent histochemical technique for detection of nonspecific alkaline phosphatase (APase) in cells. The technique utilizes standard azo dye chemistry with naphthol AS-MX phosphate as substrate and fast red TR as the diazonium salt. The reaction product is a highly fluorescent red precipitate. Pre-implantation mouse embryos were used to establish optimal fixation and staining protocols and the specificity and sensitivity of the method. Fixation was in 4% paraformaldehyde for 1 hr, as glutaraldehyde induced autofluorescence of the cells. Maximal discriminable staining was detected after 15-20 min in the stain solution. The stain solution itself proved to be non-fluorescent, thus allowing visual observation of the progress of the staining reaction by fluorescence microscopy in its presence. To test the specificity of this fluorescent APase stain, a variety of cell types of known APase reactivity were stained by this protocol. Mouse lymphocytes and STO fibroblasts were negative, whereas F9 teratocarcinoma cells, intestinal epithelial cells, and rat fetal primordial germ cells were all found to be highly positive for APase activity, in agreement with published results on APase localization in these cells.  相似文献   

15.
The stage-specific embryonic antigen 1 (SSEA-1) is a cell marker of primordial germ cells (PGCs). In the present study, it is shown that isolation and purification of PGCs from 8.5-11.5 days post coitum (dpc) embryos can be achieved by a immunomagnetic cell sorting method using SSEA-1 antibody-conjugated magnetic beads, and then the sorted PGCs can be used for long-term culture under strict culture conditions to derive embryonic germ (EG) cell lines. Five independent EG cell lines with male karyotypes have been established. They show both a strong alkaline phosphatase activity and expression of the SSEA-1 antigen, and are karyotypically stable with a modal number of chromosomes in more than 80% of the cells. One of the EG cell lines from 8.5-dpc embryos produced chimeras after injections of the cells into 8-cell host embryos. These procedures could provide a useful and simple method for isolation of undifferentiated cells from a heterogeneous cell population and for establishment of embryo-derived stem cell lines.  相似文献   

16.
大鼠原生殖细胞培养和分化的研究   总被引:2,自引:0,他引:2  
研究大鼠胚胎原生殖细胞(primordial germ cells,PGCs)的培养及分化,取受精后11-12.5天大鼠PGCs进行原代培养,光、电镜观察PGCs及其分化细胞的微细结构,碱性磷酸酶染色检测细胞的分化程度,结果显然显示大鼠PGCs大而圆,散在分布,或多个聚集成团,胞质中含有椭圆形的线粒体和丰富的核糖体,在鼠胚成纤维细胞饲养层存在的情况下,PGCs保持未分化状态,碱性磷酸酶反应呈强阳性,在缺乏饲养层的条件下PGCs很快分化,形态不规则,有伪足,碱性磷酸酶反应减弱,进一步分化可形成具有细长突起的神经元样细胞,胞质中含有细丝束的表皮细胞,可见节律性跳动的心肌细胞,具有分泌颗粒的分泌细胞及似血管,心脏形状的管腔结构等,由PGCs分化来的细胞碱性磷酸酶反应均呈阴性,结果表明大鼠PGCs能够分化形成三个胚层的衍生物,生殖嵴来源的PGCsp是一种具有发育全能性的胚胎多能干细胞,本研究同时证明鼠胚饲养层能抑制大鼠PGCs的分化。  相似文献   

17.
Summary The anlagen of neural tube or neural tube and neural crests were removed from toad embryos at the early neurula stage. The removal of the neural tube anlage does not affects the normal development of embryos. The removal of neural tube plus neural crest anlagen results in major disturbances of both endodermal morphogenesis and primordial germ cell migration. The possible indirect influence of neural crest cells upon the migration of the primordial germ cells is discussed. The neural crests cells could be involved in the formation and/or release of an attractive morphogen from embryonic chordomesoderm responsible for the migration of the primordial germ cells.  相似文献   

18.
5 pregnant mice were exposed to a single dose of 150 R whole body γ-irradiation on the 12th day of gestation. The ocytes and spermatocytes, collected from the F1 progeny at ages 10–12 weeks, were examined for chromosome aberrations in metaphase I and compared with those of the progeny of non-irradiated controls. No differences were found in the type and frequency of aberrations between irradiated and controls nor between the sexes. It appears, therefore, that either primordial germ cells of both males and females are fairly resistant to radiation or an efficient selection or repair mechanism has eliminated the aberrant cells.  相似文献   

19.
In mouse embryos, the expression of Blimp1 has recently revealed a population of allocated primordial germ cell precursors 24 hours earlier than previously thought. Those 'blimped' precursors have been shown to give rise, by mitotic division, to germ cells only and no other cell lineages. Here, we try to understand the events that lead to Blimp1 expression in the primordial germ cell precursors and speculate on what can be the role of Blimp1 during primordial germ cell specification and gastrulation in the mouse. Finally, we discuss the possible involvement of Blimp1 in the two know modes of germ line segregation (epigenesis and preformation).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号