首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted nutrient enrichment experiments and field sampling to address three questions: (1) is there nutrient limitation of phytoplankton accumulation within an estuary whose waters are exposed to relatively high nitrogen loading rates, (2) where in the salinity gradient from fresh to seawater (0 to 32‰) is there a shift from phosphorus to nitrogen limitation of phytoplankton accumulation, and (3) is there a seasonal shift in limiting function of phosphorus and nitrogen anywhere in the estuarine gradient. Nitrogen and phosphorus enrichment experiments in the Childs River, an estuary of Waquoit Bay, Massachusetts, USA, showed that the accumulation of phytoplankton biomass in brackish and saline water was limited by supply of nitrate during warm months. The effects of enrichment were less evident in fresh water, with short-lived responses to phosphate enrichment. There was no specific point along the salinity gradient where there was a shift from phosphorus- to nitrogen-limited phytoplankton accumulation; rather, the relative importance of nitrogen and phosphorus changed along the salinity gradient in the estuary and with season of the year. There was no response to nutrient additions during the colder months, suggesting that some seasonally-varying factor, such as light, temperature or a physiological mechanism, restricted phytoplankton accumulation during months other than May-Aug. There was only slight evidence of a seasonal shift between nitrogen- and phosphorus-limitation of chlorophyll accumulation. Phytoplankton populations in nutrient-rich estuaries with short flushing times grow fast, but at the same time the cells may be advected out of the estuaries while still rapidly dividing, thereby providing an important subsidy to production in nearby deeper waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Receiving coastal waters and estuaries are among the most nutrient‐enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast‐growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth‐limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low‐ to high‐nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.  相似文献   

3.
1. Phosphate uptake kinetics and uptake rates were calculated for planktonic (phytoplankton and bacterioplankton) and benthic (epiphyton and epipelon) assemblages in a large, shallow, subtropical lake. Samples were taken bimonthly over the period of 1 year at three different sites to examine spatial and temporal variability in these processes. 2. Two of the sites, located at the edge of the littoral zone next to the open water (ecotone sites), had low irradiance at the sediment surface and high total phosphorus (TP) concentration (annual mean TP = 112 μg L–1). The third site, located in the littoral marsh zone, had high irradiance at the sediment surface and low TP concentration (annual mean TP = 7 μg L–1). 3. Based on 32P-PO4 turnover time, P availability varied temporally and spatially. At the two high TP ecotone sites, P concentration was lowest in July and August. At the low TP marsh site, P limited algal production throughout the year. 4. The quotient of maximum uptake rate to half saturation constant (Vm/Ks) in the plankton increased by over two orders of magnitude during the P-limited (summer) period at the two ecotone sites, suggesting that plankton used the scarce phosphorus more efficiently. The specific uptake rate of plankton was significantly greater than that of periphyton at all sites, suggesting that the plankton were more efficient than periphyton at taking up phosphate. 5. Periphyton biomass, as well as absolute and percentage P uptake rate, was greater at the marsh site than at the ecotone sites, despite the lower P concentrations in the marsh. This was probably a result of rapid nutrient cycling, combined with high light availability in the marsh.  相似文献   

4.
The objective of this study was to investigate nutrient limitation of algal abundance in Anderson-Cue Lake, a softwater clear oligotrophic lake in north-central Florida. Nutrient diffusing clay pots and cylindrical enclosures were used in the field to test effects of different combinations of nitrogen, phosphorus, silica, and carbon on algal standing crop and composition of periphytic and planktonic algae, respectively. Effects of nutrient enrichment on periphytic algae were examined in two studies conducted 31 May – 8 July and 10 June – 15 July 1991. Nutrient effects on planktonic algae were examined in one study from 13 June – 1 July 1991. Planktonic and periphytic algal biovolume was significantly higher (p<0.05) when nitrogen and carbon were added in combination than with treatments without nitrogen, carbon, or nitrogen and carbon. Treatments with nitrogen and carbon combined resulted in lower algal diversity and dominance by coccoid green algae andScenedesmus. Results indicate that carbon and nitrogen can be limiting factors to algal growth in Anderson-Cue Lake and possibly other lakes of similar water quality.  相似文献   

5.
Olsson  Håkan  Blomqvist  Peter  Olofsson  Hans 《Hydrobiologia》1992,(1):147-155
Lake Hecklan, in central Sweden, was fertilized with phosphorus and nitrogen during thermal stratification (late May-early Oct) 1984–1987. The nutrient additions were relatively small and raised the total phosphorus concentrations from 6 to 10 µg l–1. The working hypothesis was that this moderate increase in the phosphorus concentration could increase the phytoplankton biomass without adverse changes in the planktonic community structure. The fertilization increased the phytoplankton biomass from 0.1 to a maximum of 2 mm3 l–1. Chrysophyceae and Cryptophyceae dominated throughout the experimental period. Thus, the phytoplankton composition remained typical for a Swedish forest lake and provided a potential for increased zooplankton growth. An increased growth of zooplankton was indicated by increased biomass of Cladocera and Copepoda in 1984 and 1985, and by increased fecundity of herbivorous zooplankton.  相似文献   

6.
The effects of enrichment with phosphate (0–500 µg. 1–1) and forms of nitrogen (nitrate, nitrite, ammonia an and urea) (0–3500 µgg. –1) on the phytoplankton growth of Lobo Reservoir (Brazil) were studied in July, 1979. Suspended matter, chlorophyll a, cell concentrations and the carotenoid:cchlorophyll ratio were estimated following 14 days of in situ incubation. Phosphate alone caused no significant effects, but enrichment with nitrogen caused a substantial increase on the growth of phytoplankton. Comparison between the different forms of nitrogen showed insignificant effects after their additions with 350 µg. –1 and in combination with phosphate. However, when nitrogen was added in large quantities (3 500 µg. –1), significant differences between the nitrogeneous forms were found, with urea causing the strongest effect. In July, nitrogen is mhe main limiting nutrient to phytoplankton growth of Lobo Reservoir.Supported by CNPq and FAPESP.  相似文献   

7.
Most ecosystem models consolidate members of food-webs, e.g. species, into a small number of functional components. Each of these is then described by a single state variable such as biomass. When a multivariate approach incorporating multiple substances within components is substituted for this univariate one, a stoichiometric model is formed. Here we show that the Nitrogen:Phosphorus ratio within zooplankton herbivores varies substantially intraspecifically but not intraspecifically. By using stoichiometric theory and recent measurements of the N:P ratio within different zooplankton taxa, we calculate large differences in ratios of nutrients recycled by different zooplankton species. Finally, we demonstrate that N:P stoichiometry can successfully account for shifts in N- and P-limitation previously observed in whole-lake experiments. Species stoichiometry merges food-web dynamics with biogeochemical cycles to yield new insights.Abbreviations b N:P in zooplankton biomass - f N:P in algal biomass - L maximum accumulation eficiency - N:P ratio of nitrogen to phosphorus (moles:moles) - s N:P supply ratio from grazers - TN Total nitrogen = seston N + dissolved N (µmoles/liter) - TP Total phosphorus = seston P + dissolved P (µmoles/liter)  相似文献   

8.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

9.
10.
Species-rich floating fen ecosystems in former turf ponds in the western part of The Netherlands are subject to nitrogen enrichment because of high atmospheric N deposition (50 kg ha–1,Y–1,). and supply of polluted river water in dry summer periods. Further, some fens have become more influenced by rain water because downward seepage to the groundwater has increased due to hydrological alterations. This paper describes changes in plant biomass production by comparing seasonal maximum biomass values for 15 fen sites determined with standard procedures in 1981 and 1988. Fen sites in different polders showed different species composition, which is related to differences in hydrology and history of fen management among the polders. The mid-succession fens (type 1) which are characteristically N-limited have shown a biomass increase in spite of the annual mowing regime, which shows that these fens are becoming enriched with nitrogen. There are indications that the role of phosphorus as a limiting factor increases in these fens, and that a shift of N-limited towards P-limited phanerogam growth occurs. This may bring these fens eventually in the late-succession stage, as presently found in Het Hol (type 2). The fens in this stage are P-limited and have a different species composition. It was concluded that the mesotrophic fens in the Vechtplassen area, characterized by a species-rich vegetation, can only persist in their eutrophicated environment if they are located in a groundwater discharge area and if they are annually harvested in the summer. If all fens in the area, will eventually become P-limited it is expected that the species composition will change to a more uniform late-succession vegetation type.  相似文献   

11.
Growth inhibition of algae increased as herbicide concentrations increased, particularly with prometryn and fluometuron. However, picloram had no effect on algal growth while dinoseb inhibited only Lyngbya. There were no differences in growth rate of algae treated with different levels of potassium or phosphorus. High levels of calcium or magnesium increased growth rate of the algae tested. High levels of nitrogen or pH increased growth rates except when combined with prometryn or fluometuron.  相似文献   

12.
Natural phytoplankton of Cabo Frio area was grown in 42 m-deep artificially upwelled seawater enriched with increasing concentrations of nitrogen or phosphorus. Respective values allowing maximum biomass, maximum uptake of initial reserve and maximum yield coefficient are rather conflicting. Notwithstanding, respective values of 75 μg at 1−1 nitrogen and 5 μg at 1−1 phosphorus, and therefore N:P = 15, appeared to be the best compromise for initial nutrient levels.  相似文献   

13.
1. Nutrient enrichment and resulting eutrophication is a widespread anthropogenic influence on freshwater ecosystems, but recovery from nutrient enrichment is poorly understood, especially in stream environments. We examined multi‐year patterns in community recovery from experimental low‐concentration nutrient enrichment (N + P or P only) in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (U.S.A.). 2. Rates of recovery varied among community components and depended on duration of enrichment (2–13 consecutive growing seasons). Biomass of epilithic algae returned to reference levels rapidly (within 2 years), regardless of nutrients added or enrichment duration. Aquatic bryophyte cover, which increased greatly in the Kuparuk River only after long‐term enrichment (8 years), took 8 years of recovery to approach reference levels, after storms had scoured most remnant moss in the recovering reach. 3. Multi‐year persistence of bryophytes in the Kuparuk River appeared to prevent recovery of insect populations that had either been positively (e.g. the mayfly Ephemerella, most chironomid midge taxa) or negatively (e.g. the tube‐building chironomid Orthocladius rivulorum) affected by this shift in dominant primary producer. These lags in recovery (of >3 years) were probably driven by the persistent effect of bryophytes on physical benthic habitat. 4. Summer growth rates of Arctic grayling (both adults and young‐of‐year) in Oksrukuyik Creek (fertilised for 6 years with no bryophyte colonisation), which were consistently increased by nutrient addition, returned to reference rates within 1–2 years. 5. Rates of recovery of these virtually pristine Arctic stream ecosystems from low‐level nutrient enrichment appeared to be controlled largely by duration of enrichment, mediated through physical habitat shifts caused by eventual bryophyte colonisation, and subsequent physical disturbance that removed bryophytes. Nutrient enrichment of oligotrophic Arctic stream ecosystems caused by climate change or local anthropogenic activity may have dramatic and persistent consequences if it results in the colonisation of long‐lived primary producers that alter physical habitat.  相似文献   

14.
A comparison of the benthic fauna found in two shallow lakes in the New Jersey Pinelands (USA) illustrated the impact of elevated pH and nutrients caused by residential and agricultural disturbance on a naturally acidic, poorly buffered aquatic environment. Detailed community analysis suggested that change in community composition was a better indicator of response to disturbance than biological diversity indices. Chironomidae (insecta) were the predominant components of the benthic macroinvertebrate assemblage of both undisturbed Oswego Lake (low pH, low nutrients) and Nescochague Lake (fluctuating pH, elevated nutrients). The genera Procladius, Tribelos, and Pagastiella dominated Oswego Lake, where as Zalutschia zalutschicola, Procladius, Dicrotendipes, and Tanytarsus dominated Nescochague Lake. Glyptotendipes was a common and unique member of the Nescochague Lake assemblage. Cluster analysis indicated that the chemical differences between lakes were the most important community determinants, although, within each lake, depth and substrate affected the local communities. Oswego Lake exhibited a depauperate nonchironomid benthic fauna typical of low nutrient, acid lakes. In turn, Nescochague Lake exhibited an enriched nonchironomid fauna including mollusks and planaria which were not found in Oswego Lake.  相似文献   

15.
The sediment-to-water recruitment of blue-green algae was investigated in a shallow lake following treatment with aluminum sulfate and sodium aluminate to control sediment phosphorus (P) release. A comparison of results from two summers each before and after treatment indicates that the treatment did not universally impact the recruitment of either sporulating or non-sporulating forms of blue-green algae. Blooms of Anabaena, Aphanizomenon, and Coelosphaerium resulted predominantly from growth in the water column following strong recruitment episodes lasting up to two weeks, while Microcystis populations were relatively insensitive to periodically high inputs from recruitment. The development of planktonic populations of Gloeotrichia echinulata, by contrast, were largely dependent on sustained recruitment in response to adequate light and temperature regimes at the sediment surface.The cellular P content of recruited G. echinulata colonies was unaffected by the accumulation of aluminum floc to the lake sediments. Both G. echinulata and C. naegelianum showed elevated levels of cellular P in newly recruited colonies as compared to planktonic colonies, indicating P transport from the sediments to the water column. Total P translocation by blue-green algae was negligible in the absence of a substantial recruitment of G. echinulata. The recruitment of G. echinulata, and hence the magnitude of P translocation, was therefore more responsive to environmental conditions prevalent at the sediments than to direct effects of the treatment itself.  相似文献   

16.
Bolier  G.  de Koningh  M. C. J.  Schmale  J. C.  Donze  M. 《Hydrobiologia》1992,(1):113-118
After a thirty-fold lowering of the orthophosphate concentration of the eutrophic River Meuse, the granular polyphosphate reserve of planktonic algae did not decrease significantly. Although the algal populations were clearly limited by phosphorus, individual cells stored phosphorus but did not use it to increase their biomass.  相似文献   

17.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   

18.
19.
1. To assess changes in stoichiometric constraints on stream benthos, we measured elemental composition of epilithon and benthic macroinvertebrates in intrinsically P‐limited mountain rivers, upstream and downstream of low‐level anthropogenic nutrient enrichment by effluents of municipal wastewater treatment plants. 2. While there was a broad range in the elemental composition of epilithon (C : P ratios of 200–16 500, C : N ratios of 8–280, N : P ratios of 8–535) and heptageniid mayfly scrapers (C : P ratios of 125–300, C : N ratios of 5.1–7.2, N : P ratios of 20–60), the average C : P ratio of epilithon was 10‐fold lower and the average C : N ratio twofold lower at more nutrient‐rich downstream sites. Nutrient ratios in benthic macroinvertebrates were lower than in epilithon and varied little between relatively nutrient‐poor and nutrient‐rich sites. 3. We modified the existing definition of producer‐consumer elemental imbalance to allow for variation in consumer nutrient content. We defined this ‘non‐homeostatic’ imbalance as the perpendicular distance between the producer and consumer C : P, C : N, or N : P ratios, and the 1 : 1 line. 4. At P‐limited sites, the estimated mayfly N : P recycling ratio was higher than the N : P ratio in epilithon, suggesting nutrient recycling by consumers could accentuate P‐limitation of epilithon. 5. Measuring the degree of producer–consumer nutrient imbalance may be important in predicting the magnitude of effects from nutrient enrichment and can help elucidate the causes and consequences of ecological patterns and processes in rivers.  相似文献   

20.
Kortmann  R. W.  Henry  D. D.  Kuether  A.  Kaufman  S. 《Hydrobiologia》1982,91(1):501-510
Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号