首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two isolates of the marine pennate diatom Phaeodactylum tricornutum Bohlin were grown in semi-continuous, nutrient-sufficient culture at varying irradiances on a 12-h light, 12-h dark illumination cycle. The reponse of the isolates to varying degrees of light limitation differed with respect to all of the compositional parameters measured, including growth rates, elemental composition, chlorophyll content, and the partitioning of cellular carbon into four biochemical classes: proteins, lipids, polysaccharides, and low-molecular weight intermediates. The isolates also differed with respect to the relative contributions of light-period and dark-period uptake to the total uptake of ammonium and phosphate ions, although in all cases uptake took place at a reduced rate in the dark. They did not differ with respect to the diel periodicity of cell division, chlorophyll synthesis, and biochemical synthesis. Slightly more cell division took place during the dark period than during the light period. The specific rate of chlorophyll synthesis in the light period, when expressed as a function of irradiance, saturated rapidly; the rate was nearly constant for all irradiances > 100 βE · m?2 · s?1. Chlorophyll synthesis in the dark was positively correlated with irradiance over the entire range of irradiances, except where photoinhibition was involved. Protein was synthesized in both the light and dark periods, but at a reduced rate in the dark. Polysaccharides were synthesized during the light period and consumed during the dark period. Lipids and low molecular weight intermediates were synthesized during the light period, but showed little net change during the dark period.  相似文献   

2.
We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P‐ and N‐limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P‐ and N‐limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P‐limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N‐limitation. Under P‐limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night.  相似文献   

3.
The non-heterocystous cyanobacterium Oscillatoria sp. strain 23 fixes nitrogen under aerobic conditions. If nitrate-grown cultures were transferred to a medium free of combined nitrogen, nitrogenase was induced within about 1 day. The acetylene reduction showed a diurnal variation under conditions of continuous light. Maximum rates of acetylene reduction steadily increased during 8 successive days. When grown under alternating light-dark cycles, Oscillatoria sp. fixes nitrogen preferably in the dark period. For dark periods longer than 8 h, nitrogenase activity is only present during the dark period. For dark periods of 8 h and less, however, nitrogenase activity appears before the beginning of the dark period. This is most pronounced in cultures grown in a 20 h light – 4 h dark cycle. In that case, nitrogenase activity appears 3–4 h before the beginning of the dark period. According to the light-dark regime applied, nitrogenase activity was observed during 8–11 h. Oscillatoria sp. grown under 16 h light and 8 h dark cycle, also induced nitrogenase at the usual point of time, when suddenly transferred to conditions of continuous light. The activity appeared exactly at the point of time where the dark period used to begin. No nitrogenase activity was observed when chloramphenicol was added to the cultures 3 h before the onset of the dark period. This observation indicated that for each cycle, de novo nitrogenase synthesis is necessary.  相似文献   

4.
Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell’s metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production.  相似文献   

5.
Diel changes in mean cell volume, cellular carbon (carbon content per cell), cellular Chl a, C/N ratio, Chl a/carbon ratio and pigment composition were determined for an axenic clonal culture of Pyramimonas parkeae Norris et Pearson through three 12:12 h LD cycles in a laboratory culture tank of 1 m3. Mean cell volume and cellular C, N and most pigments increased during the light period as a result of photosynthesis and decreased with an increase in cell density by phased cell division during the dark period. Chi a and Chi b increased in a parallel manner during the light period. Increases in the diel synthesis pattern of carotenoids varied. Violaxanthin and lutein content increased for a few hours at the beginning of the light period and preceeded that of neoxanthin. The diel synthesis pattern of neoxanthin was similar to that of Chi a. Increases of loroxanthin and its ester form were slower than that of Chi a at the beginning of the light period. A net increase of α-carotene was observed during the dark period. Mass spectroscopy of carotenoid structure showed a new xanthophyll, loroxanthin dodecenoate, in this species.  相似文献   

6.
When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.Abbreviation Chl chlorophyll  相似文献   

7.
The development and starch accumulation of cereal endosperms rely on the sugar supply of leaves, which is subject to diurnal cycles, and the endosperm itself also experiences a light/dark switch. However, revealing how the cereal endosperm responds to diurnal input remains a major challenge. We used comparative proteomic approaches to probe diurnally affected processes in rice endosperm (Oryza sativa) 10 days after flowering under 12-h light/12-h dark. Starch granules in rice endosperm showed a growth ring structure under a normal light/dark cycle but not under constant light. Sucrose showed a high level in light and low level in dark. Two-dimensional (2-D) differential in-gel electrophoresis-based proteomic analysis revealed 101 protein spots diurnally changed and 91 identities, which were involved in diverse processes with preferred distribution in stress response, protein synthesis/destination and metabolism. Proteins involved in cell division showed high expression in light and those in cell enlargement and cell wall synthesis high in dark, while starch synthesis proteins were light-downregulated and dark-upregulated. Redox homeostasis-associated proteins showed in-phase peaks under light and dark. These data demonstrate diurnal input-regulated diverse cellular and metabolic processes in rice endosperm, and coordination among these processes is essential for development and starch accumulation with diurnal input.  相似文献   

8.
The wrasse,Suezichthys gracilis, is a diurnal fish which buries itself in sand during the night-time. The present paper deals with the locomotor activity rhythms ofS. gracilis, examined by using an actograph with infra-red photo-electric switches in a dark room. The fish were kept in eight experimental tanks (each 30l in capacity), with three different bottom conditions: sand (grain size about 1 mm in diameter and 5 cm deep); 1 or 2 stones (about 10cm in diameter) without sand; and transparent acrylic pellets (2 × 2 × 3 mm in size, 5 cm deep). The light intensities were 550–700 lux just above the water surface, decreasing to 21.3% under the acrylic pellets at a water depth of 20cm. The water temperatures were kept at 22.0–25.0°C during the experiments for 7 to 14 days. In the aquarium with bottom sand, diel activity rhythms ofS. gracilis were mostly synchronized to LD (LD12:12; 06:00–18:00 light, 18:00–06:00 dark), free-running activity rhythms continued distinctly under LL (constant illumination), and locomotor activity was greatly suppressed, with disappearance of the activity rhythm, under DD (constant darkness). In the aquarium without sand, locomotor activity ofS. gracilis could be summarized as follows. The fish moved throughout almost the entire period under LD, though more frequent movements were observed in light conditions than in dark ones. Under LL they showed continuous locomotor activity during the experiment, with no obvious periodicity. Under DD the activity of the species was somewhat suppressed, but irregular movement or indistinct periodicity was observed. In the aquarium with transparent acrylic pellets, locomotor activity under LD and DD, respectively, bore a close resemblance to activity patterns under the same light conditions with sand, whilst activity under LL was identical to that under LL without sand. Accordingly, it seems that maintenance of normal activity rhythms in the wrasse was due not only to the darkness, but also to the presence of bottom sand. It therefore seems that the biological clock inS. gracilis is not related to locomotor activity, but to burying behavior.  相似文献   

9.
Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2 fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell.  相似文献   

10.
Chemical composition and lipid biosynthesis were studied in the marine eustigmatophyte Nannochloropsis sp. Grown under a 12:12 h light-dark regime. Cellular division occurred in the dark and was associated with a reduction in cell volume. The cellular content of chlorophyll a and carotenoids increased during the light period and decreased during the dark period. Other cellular components, such as proteins, carbohydrates and lipids, followed a similar pattern. Nannochloropsis sp. Incorporated acetate, mostly into lipids during the light period, whereas a low rate of acetate incorporation was observed during the dark period, mostly into nonlipid compounds. Neutral lipids such as triacylglycerol were synthesized and accumulated in the light and showed a rapid turnover in the dark. Polar structural lipids such as monogalactosyl diacylglycerol were synthesized during the light period and hardly turned over during the dark period. Changes in lipid content were associated with variations in cellular fatty acid composition. The light period was characterized by an increase in the percentage of C16:0 and 16:1 fatty acids associated with triacylglycerols. However, in the dark period, as triglycerides were consumed for cellular maintenance, the relative distribution of the C20:5 fatty acid associated with the galactolipids increased.  相似文献   

11.
In a previous study we showed that rats fed ad libitum and maintained on a 12-h light/ 12-h dark cycle demonstrated out-of-phase circadian oscillations in the rates of ornithine aminotransferase and serine dehydratase synthesis. As part of an investigation of the factors regulating both the generation of these cycles and their dissimilarity, this paper ompares the circadian fluctuations in the rates of ornithine aminotransferase and serine dehydratase synthesis measured immunochemically in rats given a single 2-h daily feeding in conjunction with exposure to constant light or a 12-h light/12-h dark cycle. When the 2-hr feeding was administered to rats under constant light, reciprocal circadian oscillations in ornithine aminotransferase and serine dehydratase synthesis were observed regardless of the temporal location of the feeding interval. Ornithine aminotransferase synthesis began to increase after the feeding interval and reached a maximum 12 h later while serine dehydratase showed the opposite response. In rats maintained on both the restricted feeding regimen and a 12-h light/12-h dark cycle, however, retention of synthesis oscillations depended on the temporal location of the restricted feeding interval within the light-dark cycle. Rats fed for 2 h at the beginning of the dark phase exhibited circadian oscillations in serine dehydratase synthesis and a high nonoscillating level of ornithine aminotransferase synthesis, whereas rats fed for 2 h at the beginning of the light phase exhibited circadian oscillations in ornithine aminotransferase synthesis and a low nonoscillating level of serine dehydratase synthesis. These responses suggest the existence of meal-responsive and light-responsive regulators of ornithine aminotransferase and serine dehydratase synthesis.  相似文献   

12.
Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7‐ to 8‐fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3‐ to 4‐fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ~8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control.  相似文献   

13.
Synthesis of the chlorophyll and the major carotenoid pigments and their assembly into thylakoid membrane have been studied throughout the 12-h light/12-h dark vegetative cell cycle of synchronous Chlamydomonas reinhardtii 137+ (wild-type). Pulse exposure of cells to radioactive acetate under conditions in which labeling accurately reflects lipogenesis, followed by cellular fractionation to purify thylakoid membrane, allowed direct analysis of the pigment synthesis and assembly attendant to thylakoid biogenesis. All pigments are synthesized and assembled into thylakoids continuously, but differentially, with respect to cell-cycle time. Highest synthesis and assembly rates are confined to the photoperiod (mid-to-late G1) and support chlorophyll and carotenoid accretion before M-phase. The lower levels at which these processes take place during the dark period (S, M, and early-to- mid G1) have been ascribed to pigment turnover. Within this general periodic pattern, pigment synthesis and assembly occur in a "multi- step" manner, i.e., by a temporally-ordered, stepwise integration of the various pigments into the thylakoid membrane matrix. The cell-cycle kinetics of pigment assembly at the subcellular level mirror the kinetics of pigment synthesis at the cellular level, indicating that pigment synthesis not only provides chlorophyll and carotenoid for thylakoid biogenesis but may also serve as a critical rate-determinant to pigment assembly.  相似文献   

14.
In the prokaryote Synechococcus RF-1, circadian changes in the uptake of l-leucine and 2-amino isobutyric acid were observed. Uptake rates in the light period were higher than in the dark period for cultures entrained by 12/12 hour light/dark cycles. The periodic changes in l-leucine uptake persisted for at least 72 hours into continuous light (L/L). The rhythm had a free-running period of about 24 hours in L/L at 29°C. A single dark treatment of 12 hours could initiate rhythmic leucine uptake in an L/L culture. The phase of rhythm could be shifted by a pulse of low temperature (0°C). The free-running periodicity was “temperature-compensated” from 21 to 37°C. A 24 hour depletion of extracellular Ca2+ before the free-running L/L condition reduced the variation in uptake rate but had little effect on the periodicity of the rhythm. The periodicity was also not affected by the introduction of 25 mm NaNO3. The uptake rates for 20 natural amino acids were studied at 12 hour intervals in cultures exposed to 12/12 hour light/dark cycles. For eight of these amino acids (l-Val, l-Leu, l-Ile, l-Pro, l-Phe, l-Trp, l-Met, and l-Tyr), the light/dark uptake rate ratios had values greater than 3 and the rhythm persisted in L/L.  相似文献   

15.
The purpose of this research was to test the hypothesis that acclimation of the unicellular marine alga, Thalassiosira fluviatilis Hustedt, to short photoperiods results in decreased cellular concentrations of ribulose 1,5-bisphosphate carboxylase/oxygenase and decreased rates of light-saturated CO2 uptake. Cells were acclimated to photoperiods of 6:18, 12:12, and 18:6 h:h light:dark, and concentrations of the large subunit of the enzyme and responses of CO2 uptake to varying irradiance were measured. Concentrations of the large subunit, which weighed approximately 50 kilodaltons, were conserved while rates of CO2 uptake under light saturation and limitation, and cellular contents of chlorophyll a increased as photoperiod decreased. Apparently, these cells acclimate to short photoperiods by increasing rates of CO2 uptake under saturating irradiances by increasing in vivo activation of ribulose 1,5-bisphosphate carboxylase/oxygenase. Also, chlorophyll-specific concentrations and specific activities of the enzyme appear to be lower and higher, respectively, in diatomaceous algae than in higher plants.  相似文献   

16.
Heterotrophy is known to stimulate calcification of scleractinian corals, possibly through enhanced organic matrix synthesis and photosynthesis, and increased supply of metabolic DIC. In contrast to the positive long-term effects of heterotrophy, inhibition of calcification has been observed during feeding, which may be explained by a temporal oxygen limitation in coral tissue. To test this hypothesis, we measured the short-term effects of zooplankton feeding on light and dark calcification rates of the scleractinian coral Galaxea fascicularis (n = 4) at oxygen saturation levels ranging from 13 to 280%. Significant main and interactive effects of oxygen, heterotrophy and light on calcification rates were found (three-way factorial repeated measures ANOVA, p<0.05). Light and dark calcification rates of unfed corals were severely affected by hypoxia and hyperoxia, with optimal rates at 110% saturation. Light calcification rates of fed corals exhibited a similar trend, with highest rates at 150% saturation. In contrast, dark calcification rates of fed corals were close to zero under all oxygen saturations. We conclude that oxygen exerts a strong control over light and dark calcification rates of corals, and propose that in situ calcification rates are highly dynamic. Nevertheless, the inhibitory effect of heterotrophy on dark calcification appears to be oxygen-independent. We hypothesize that dark calcification is impaired during zooplankton feeding by a temporal decrease of the pH and aragonite saturation state of the calcifying medium, caused by increased respiration rates. This may invoke a transient reallocation of metabolic energy to soft tissue growth and organic matrix synthesis. These insights enhance our understanding of how oxygen and heterotrophy affect coral calcification, both in situ as well as in aquaculture.  相似文献   

17.
The relationship between the abundance of nitrogenase and its activity was studied in the marine unicellular cyanobacterium Gloeothece sp. 68DGA cultured under different light/dark regimens. The Fe‐ and MoFe‐protein of nitrogenase and nitrogen (N2)‐fixing (acetylene reduction) activity were detected only during the dark phase when the cells were grown under a 12 h light/12 h dark cycle (12L/12D). Nitrogenase activity appeared about 4 h after entering the dark phase. Maximum nitrogenase activity occurred at around the middle of the dark phase, and the activity rapidly decreased to zero before the start of the light phase. The rapid decrease of nitrogenase activity and the Fe‐protein of nitrogenase near the end of the dark phase in 12L/12D were partly recovered by the addition of l ‐methionine‐sulfoximine, an inhibitor of glutamine synthetase. Diurnal oscillation of the abundance of nitrogenase was maintained in the first subjective dark phase (i.e. the period corresponding to the dark phase) after the cells were transferred from 12L/12D to continuous illumination. However, enzyme activity was detected only when photosynthetic oxygen (O2) evolution was completely suppressed by reducing the light intensity or by the addition of 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea. Nitrogenase always appeared in the cells about 16 h after starting the light phase, even when the 12L/12D cycle was modified by the addition or subtraction of a single 6 h period of light or dark. These results suggest the following: (i) N2‐fixation by Gloeothece sp. 68DGA is primarily regulated by an endogenous circadian oscillator at the level of nitrogenase synthesis. (ii) The endogenous circadian rhythm resets on a shift of the timing of the light phase. (iii) Nitrogenase activity is not always reflected in the presence of nitrogenase. (iv) The activity of nitrogenase is negatively regulated by fixed nitrogen and the concentration of ambient O2.  相似文献   

18.
Responses of foliar and isolated intact chloroplast photosynthetic carbon metabolism observed in spinach (Spinacia oleracea cv Wisconsin Bloomsdale) plants exposed to a shortened photosynthetic period (7-hour light/17-hour dark cycle), were used as probes to examine in vivo metabolic factors that exerted rate determination on photosynthesis (PS) and on starch synthesis. Compared with control plants propagated continuously on a 12-hour light/12-hour dark cycle, 14 to 15 days were required, subsequent to a shift from 12 to 7 hours daylength, for 7-hour plants to begin to grow at rates comparable to those of 12-hour daylength plants. Because of shorter daily durations of PS, daily demand for photosynthate by growth processes appeared to be greater in the 7-hour than in the 12-hour plants. The result was that 7-hour plants established a 1.5- to 2.0-fold higher total PS rate than 12-hour plants.

Intact chloroplasts isolated from the leaves of 7-hour plants (7-h PLD) displayed 1.5- to 2.0-fold higher PS rates than plastids isolated from 12-hour plants (12-h PLD). Plastid lamellae prepared from 7- and 12-h PLD isolates displayed equivalent rates of ferredoxin-dependent ATP and NADPH photoformation indicating that electron transport processes were not factors in the establishment of higher 7-h PLD PS rates. Analyses, both in leaves as well as intact PLD isolates, of dark to light transitional increases in Calvin cycle intermediates, e.g., ribulose-1,5-bisphosphate (RuBP) and 3-phosphoglycerate (3-PGA), as well as estimations of activities of RuBP carboxylase and fructose-1,6-bisphosphate phosphatase, indicated that 7-hour plant leaves displayed higher PS rates (than 12-hour plants), because there was a higher magnitude of activity of the Calvin cycle.

Although both the foliar level of starch and sucrose, as well as starch synthesis rate, often was higher in 7-hour compared with 12-hour plant foliage, the higher 7-hour plant total PS rates indicated that maximal sucrose and starch levels did not mediate any `feedback' inhibition of PS. The higher 7-hour plant foliar and PLD PS rates resulted in higher glucose-1-P levels as well as a higher ratio of 3-PGA:Pi, both factors of which would enhance the activity of chloroplast ADP-glucose pyrophosphorylase, and which were attributed to be causal to the higher starch synthesis rates observed in 7-hour plant foliage and PLD isolates.

  相似文献   

19.
The synthesis and assembly of thylakoid membrane polar glycerolipid (glycolipid, phospholipid, and ether lipid) have been monitored in synchronous cultures of the green alga Chlamydomonas reinhardtii 137+. A "pulse" protocol using radioactive acetate as the lipogenic precursor was devised to allow assessment of both processes during the 24-h (12-h light/12-h dark) vegetative cell cycle. Under these conditions, acetate incorporation into each chromatographically resolved lipid at the cellular level reliably reflects lipid synthesis, and the appearance of radiolabeled lipid in purified photosynthetic membrane is indicative of the lipid assembly attendant to thylakoid biogenesis. Our results demonstrate that polar glycerolipid is synthesized by the alga and is assembled into its thylakoid membrane continuously, but differentially, with respect to cell cycle time. Synthesis and assembly are most rapid during the photoperiod (mid-to-late G1), reach maximum rates at mid- photoperiod, and are comparatively negligible in the dark (S, M, and early-to-mid G1). The extent to which synthesis and assembly vary within this general kinetic pattern, though, is characteristic of each thylakoid lipid, suggesting that the processes take place in a multistep manner with some temporal coordination among the different lipid types. Parallelism between the cyclic patterns of polar lipid synthesis at the cellular level and of polar lipid assembly into photosynthetic membrane at the subcellular level indicates that lipid production is not only essential to continuing thylakoid biogenesis but is also the critical determinant of the kinetics of thylakoid lipid assembly.  相似文献   

20.
Chlamydomonas reinhardii Dangeard was grown in continuous culture under P limitation at a range of dilution rates. Carbon uptake measurements were performed using double isotope (12C/14C) techniques and the fluxes of carbon in the light and dark were analysed over the range of growth rates. 14C uptake was shown to be equal to gross photosynthesis only at maximum relative growth rates; at low relative growth rates 14C uptake approximated net photosynthesis. The altered pattern of C uptake was found to be due to the suppression of dark respiration in the light and the release of 14C02 from respiratory pathways at low relative growth rates. Metabolic channelling of 14C from photosynthetic pathways to respiratory pathways occurred at low growth rates as the specific activity of the respired CO2 reached 45% of the input gas mixture. These data are discussed in the light of the controversy concerning the measurement of gross and net photosynthesis in natural populations and in the light of models of 14C uptake in single celled algae. Existing models are shown to be adequate for high relative growth rates but not for low relative growth rates under P limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号