首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of diurnal variations in light intensity on the biomass characteristics and the efficiency of daily growth of Skeletonema costatum (Grev.) Cleve were evaluated. The relative importance of changes in carbon specific rates of respiration and organic release to the efficiency of growth was determined. Light intensity was either constant at 130 μE · m?2 · s?1 during the light period or fluctuated throughout the light period from 500 to 10 μE · m?2 · s?1 at rates of either 1 or 12 cycles · day?1. Total daily light was equivalent for all light regimes at 5.6 E · m?2 · day?1.Daily rates of growth remained comparable at ≈ 1 · day?1 under constant and fluctuating light regimes. Cell size as daily mean carbon · cell?1, nitrogen · cell?1 and cellular volume was decreased under diurnally varying light whereas daily mean chlorophyll a · cell?1 was unaffected.Rates of respiration, organic release and gross production were elevated several fold under diurnally varying light in comparison to constant light. Net growth efficiency decreased from 0.69 under constant light to values of 0.50 and 0.38 under 1 and 12 cycles · day?1, respectively. Decreased efficiency of growth under diurnally fluctuating light resulted mostly from greater respiratory activity while organic release remained < 10% of gross production. Increased rates of gross production reflected enhancement in the efficiency of carbon fixation with fluctuating light.  相似文献   

2.
Using fluorescently labeled algae (FLA) as food particles, the ingestion rate of an oligotrichous ciliate, Lohmanniella sp., was 0.4 FLA ciliate-1 min-1 in the dark, but decreased to 0.07 FLA ciliate-1 min-1 when illuminated at 115 s-1 m-2. When the light was abruptly switched on or off, changes in ingestion rate were immediate with no delay. These results suggest that the effect of light may have to be considered in the experimental design when measuring ciliate feeding rates in marine environments.   相似文献   

3.
The skeletal dry weight of the 4.4 ± 0.2 cm size class of Asterias rubens L. from Kiel Bay in the western Baltic is 0.34 ± 0.08 g. The sum of calcium and magnesium carbonates in the skeleton amounts to 94.0 ± 1.3% while the individual concentrations are 86.9 ± 1.3% CaCO3 and 7.1 ± 0.7% MgCO3. The MgCO3 is 4% lower than expected for a magnesium calcite precipitated under Baltic temperature conditions (8°C). Strontium was not determined but strontium carbonate is known to be in the region of 0.4%. The remainder is organic matter and this gives rise to 2.9 ± 1.3% organic carbon.Animals studied were at the ‘waiting stage’ and their actual growth was minimal. Uptake of 45Ca in the skeleton consists of a fast step followed by a slow step. The fast step is attributed to saturation of exchangeable skeletal pools while the slow step is due to net deposition of CaCO3. Skeletal growth at the waiting stage calculated from the second rate constant was found to be 0.76 μg CaCO3j-mg skeleton?1 · day?1 or 0.09% · day?1 compared with 9.3 μg CaCO3 · mg skeletont1&#x0304; · day?1 or 1.1% · day?1 at log phase. The isotope method is considered superior to size-frequency analysis in that it is capable of detecting differences in growth rate in individuals of the same size class and thus provides an insight into asteroid population structure.  相似文献   

4.
Cryptomonas erosa Skuja, a planktonic alga, was grown in batch culture at different combinations of light intensity and temperature, under nutrient saturation. Growth was maximal (1.2 divisions · day?1) at 23.5 C and 0.043 ly · min?1, declining sharply with temperature (0.025 divisions-day?1 at 1 C). With decreasing temperature, the cells showed both light saturation and inhibition at much reduced light intensities. At the same time the compensation light intensity for growth declined towards a minimum of slightly above 0.4 × 10?4 ly · min?1 (~1 ft-c) at 1 C or <0.1 ly · day?1 (PAR). Cell division was more adversely affected by low temperature than carbon uptake, and the resulting excess production of photosynthate was both stored and excreted. Extreme storage of carbohydrates resulted in cell volumes and carbon content ca. 22 and 30 × greater, respectively, than the maxima observed for cells incubated in the dark, whereas, at growth inhibitory light levels, as much as 57% of the total assimilated carbon was excreted. A marked increase in cell pigment was observed at the lowest light levels (<10?3 ly · min?1), at high temperature. The growth response of C. erosa in culture provides insight into the abundance and distribution of cryptomonads and other small algal flagellates in nature.  相似文献   

5.
Filtration and ingestion rates of Salpa fusiformis Cuvier were determined while fed Phaeodactylumtricomutum Bohlin at concentrations of 2?64 × 103 cells·ml?1. Filtration and ingestion rates increase exponentially with increasing length and body protein. The relations between protein content and body length, and between filtration rate and weight are similar for blastozooids and oozooids. A capture efficiency of the order of 6–32% is calculated: Salpa fusiformis seems to have a low retention efficiency, but its very high filtration rate gives it pride of place amongst filter-feeders. Specific filtration rates are independent of weight; specific ingestion rates are independent of weight for blastozooids, but for oozooids they seem to diminish with increasing weight. The mean daily ration (μg C ingested · μg body C?1) is 107% for a blastozooid and 117% for an oozooid. Specific filtration rates decrease exponentially as particle concentration rises, as for many other filter-feeders, and the specific ingestion rate follows an Ivlev relation.  相似文献   

6.
Natural phytoplankton assemblages from the Scripps Pier were grown in two chemostats under conditions that simulated two rates of upwelling followed by oligotrophic conditions. At a moderate upwelling rate (D = 0.3·day?1) centric diatoms were selected, while at a low rate (D = 0.1·day?1) a mixture of species dominated. Pumping of low-nutrient water (oligotrophy) resulted in a mixture of species at both rates. Upwelling at a high rate decreased diversity of the crop as compared with the low rate or oligotrophy. These results are compared with those of others who have subjected natural assemblages to continuous culture.  相似文献   

7.
To test models of intracellular carbon flow we measured the labelling kinetics (from 14CO2) of major classes of cell polymers (carbohydrate, protein, lipid) and of dissolved organic carbon produced by the marine diatom Thalassiosira pseudonana Hustedt, grown at rates of 0.2 to 2.0·day?1 under nitrogen or light limitation. Compartmental analysis indicated that tracer carbon quickly entered respiratory and excretory streams, accumulating in the cells at the rate of net production after only 25–50% of cell generation (doubling) time. Respiration rates were low (≤ 0.1 · day?1) and suggested that illuminated cells in steady-state growth made only minor use of oxidative respiration to support cell synthesis. The tracer was quick to enter all polymers; compartmental analysis indicated that polymer labelling rates were close to the rates of mass synthesis after several hours of incubation with 14C. Polymer labelling also showed a reallocation of photosynthate from protein to carbohydrate within a few hours of perturbation (shift-down) of nutrient supply in a N-limited chemostat. In steady-state growth, the protein: carbohydrate ratio increased directly with N-limited growth rate but attained its maximum under extreme light-limitation. Carbon flow into the metabolic processes of respiration, excretion and polymer synthesis appeared to be mediated by a small and rapidly cycled pool of substrates under all steady-state growth conditions.  相似文献   

8.
Microalgae cultivation systems can be divided broadly into open ponds and closed photobioreactors. This study investigated the growth and biomass productivity of the halophilic green alga Tetraselmis sp. MUR-233, grown outdoors in paddle wheel-driven open raceway ponds and in a tubular closed photobioreactor (Biocoil) at a salinity of 7 % NaCl (w/v) between mid-March and June 2010 (austral autumn/winter). Volumetric productivity in the Biocoil averaged 67 mg ash-free dry weight (AFDW) L?1 day?1 when the culture was grown without CO2 addition. This productivity was 86 % greater, although less stable, than that achieved in the open raceway pond (36 mg L?1 day?1) grown at the same time in the autumn period. The Tetraselmis culture in the open raceway pond could be maintained in semi-continuous culture for the whole experimental period of 3 months without an additional CO2 supply, whereas in the Biocoil, under the same conditions, reliable semi-continuous culture was only achievable for a period of 38 days. However, stable semi-continuous culture was achieved in the Biocoil by the addition of CO2 at a controlled pH of ~7.5. With CO2 addition, the volumetric biomass productivity in the Biocoil was 85 mg AFDW L?1 day?1 which was 5.5 times higher than the productivity achieved in the open raceway pond (15 mg AFDW L?1 day?1) with CO2 addition and 8 times higher compared to the productivity in the open raceway pond without CO2 addition (11 mg AFDW L?1 day?1), when cultures were grown in winter. The illuminated area productivities highlight an alternative story and showed that the open raceway pond had a three times higher productivity (3,000 mg AFDW m?2 day?1) compared to the Biocoil (850 mg AFDW m?2 day?1). Although significant differences were found between treatments and cultivation systems, the overall average lipid content for Tetraselmis sp. MUR-233 was 50 % in exponential phase during semi-continuous cultivation.  相似文献   

9.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

10.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

11.
Feeding rates of Brachionus plicatilis were studied for two types of food — algae Monochrysis lutheri and baker's yeast Saccharomyces cerevisae. The main regularities of changes in filtration rate and ration were studied in small culture volumes (1 ml) for adult amictic females depending on food concentration (1, 2, 4, 8 and 16 · 106 cells · ml−1), ambient temperature (16 and 26 °C), and salinity (5, 10, 15, 20, 25 and 30 ppt). B. plicatilis ration did not depend on the salinity, but was largely determined by temperature and food concentration. It was found that at 16 and 26 °C the dependence of the ingestion rate (ration) on food concentration differed greatly. A hypothesis was suggested to explain this phenomenon. A critical concentration of both types of food at which the increase in the rotifer ration ceased is 4 · 106 cells · ml−1. This is the minimum “background” food concentration for B. plicatilis mass cultivation. The average rations measured at the concentration of M. lutheri and S. cerevisae of 4 · 106 cells · ml−1 where 1.3 ± 0.1 and 4.8 ± 1.3 μg dry weight. · ind−1 · day−1 at 26 °C and 0.54 ± 0.1 and 1.9 μg d. w. · ind−1 · day−1 at 16 °C, respectively. The rations obtained in the laboratory were corrected for the conditions of rotifer commercial production in the open field in summer time. The correct values were 0.86 and 0.72 μg d. w. · ind−1 · day−1 for algae and yeast, respectively.  相似文献   

12.
1. Ophrydium versatile is a symbiotic ciliate which forms gelatinous colonies up to several centimetres in diameter in transparent temperate lakes. The ciliates are evenly spaced at the colony surface and constitute a small proportion of the surface area (7%) and volume (3.1%) of the colony, but a large proportion of organic carbon (74%) and nitrogen content (82%) (exemplified for 1 cm3 colonies). The majority of the colony volume is formed by the jelly. The biomass proportion of ciliates scales inversely with colony size, following the decline of surface area to colony volume. The largest colonies found in Danish lakes in early summer contain almost 1 million ciliates, and assuming they derive from a single ciliate undergoing exponential division, they need twenty generations and, presumably, almost a year to reach maximum size. 2. The ciliates contain numerous symbiotic zoochlorellae that constitute about 10% of ciliate volume and more than half of the carbon content. Zoochlorellae dominate oxygen metabolism of the assemblage, resulting in low light compensation points, a large diel photosynthetic surplus, and a marked dependence on light for sustained growth and ciliate metabolism. Estimated gross photosynthesis (7ng C ciliate?1 day?1) of Ophnrydium from shallow, clear waters in June greatly exceeded the estimated carbon contained in filtered bacteria and small algae (1.9ng C cilicate?1 day?1). Nitrogen and phosphorus content of the prey, however, may provide the main nutrient source consistent with the correspondence between mass-specific rates of nutrient uptake and measured relative growth rates (average 0.067 day?1, generation time 10 days). 3. The large Ophrydium colonies require increased allocation of photosynthetic carbohydrates with increasing colony size to maintain the jelly. The large colonies tend to become gas-filled, floating, mechanically destroyed and their ciliate inhabitants abandon them as swarmers. Colony formation, however, should offer protection against predators which may be more important for the natural abundance than the costs of growing in a colony.  相似文献   

13.
Photosynthesis and respiration rates of blades from a selected, fast growing strain of the marine red alga. Gigartina exasperata Harvey and Bailey, a carrageenan producer, were measured with an oxygen electrode and compared with rates similarly obtained from wild material of the same species. The measurements, expressed as μl O2 · mg chl a?1, min?1. were made over a light intensity range from 5 to 800 μE · m?2 · sec?1 and a temperature range of 6 to 16°C. The photosynthesis light intensity data are best described by hyperbolic functions.  相似文献   

14.
Low environmental temperature is a major factor affecting the feeding activities, growth rates, and growth efficiencies of metazooplankton, but these features are poorly characterized for most protistan species. Laboratory experiments were conducted to examine the growth and ingestion rates of cultured herbivorous Antarctic ciliates. Three ciliates fed several algal species individually at 0 °C exhibited uniformly low growth rates (<0.26 day?1), but the algae varied substantially in their ability to support ciliate growth. Specific ingestion rate (prey biomass consumed per unit ciliate biomass per unit time) was strongly affected by ciliate physiological state (starved vs. actively growing). Starved cells ingested many more prey than cells in balanced growth during short-term (minutes-to-hours) experiment but did not grow faster, indicating temperature compensation of ingestion rate but not growth rate. Field experiments were also conducted in the Ross Sea, Antarctica, to characterize the feeding rates of ciliates in natural plankton assemblages. Specific ingestion rates of two dominant ciliates were an order of magnitude lower than rates reported for temperate ciliates, but estimated rates were strongly affected by prey abundance. Our data indicate that short-term ingestion rates of Antarctic ciliates were not constrained by low environmental temperature although overall growth rates were, indicating the need for caution when designing experiments to measure the ingestion rates of these species at low environmental temperature. We present evidence that artifacts arising from estimating ingestion in short-term experiments may lead to errors in estimating feeding impact and growth efficiencies that are particularly large for polar protists.  相似文献   

15.
Net production of theEcklonia cava community was monitored on a monthly basis for a year, and annual net production was estimated. Growth rate of blades reached a maximum of about 13 g dry wt·m?2·day?1 in spring and a minimum of about 2 g dry wt·m?2·day?1 in late summer. Annual production of blades was calculated to be 2.84 kg dry wt·m?2·year?1. If the growth of stipes is taken into account, annual net production is estimated to be about 2.9 kg dry wt·m?2·year?1. Standing crop was monitored monthly for two and a half years, and a close negative correlation was found between seasonal change in standing crop and net production. Standing crop reached a maximum of about 3 kg dry wt·m?2 in summer and a minimum of about 1 kg dry wt·m?2 in winter. Low productivity in summer at a period of maximum biomass may be explained by the dense canopy and the large area of reproductive portion occupying a blade, which diminish net assimilation.  相似文献   

16.
In a long-term (40–55 wk) microcosm experiment, the presence of the polychaete Capitella capitata (Type I) Fabricius reduced population densities and trophic transfer efficiencies (detritivore production per amount of detritus supplied) of the nematode Diplolaimella chitwoodi Gerlach at high (150 mg N · m?2 · day?1) detritus ration and of the harpacticoid copepod Tisbe holothuriae Humes at low (50 mg N · m?2 · day?1) detritus supply. The rarer nematodes Theristus ostentator Wieser & Hopper and Paracyatholaimus pesavis Wieser & Hopper fed at depth on fungal hyphae attached to polychaete fecal pellets thereby minimizing contact with the other metazoa.In a series of short-term (4-day) growth experiments, the presence of either Diplolaimella chitwoodi or Tisbe holothuriae reduced daily weight-specific growth (g increase · g worm?1 · day?1) of Capitella capitata on separate diets of mixed cereal and red seaweed, Gracilaria foliifera (Harvey) Taylor, detritus.Both sets of experiments suggest that Capitella capitata competes for food with Diplolaimella chitwoodi and Tisbe holothuriae. Meiofauna-polychaete interactions were dependent, in part, upon the degree of similarity among species in food requirements and habitat preferences, and may incorporate a variety of regulatory mechanisms other than competition or predation.  相似文献   

17.
《Biomass》1990,21(2):145-156
Duckweed, Lemna gibba, was grown in 12 m2 shallow ponds in the Negev desert, during 12 months of continuous cultivation, beginning April 1984. Average monthly growth rates varied with the season of the year. The lowest daily yield, 2·6±0·4 g dry weight m−2 day−1, was obtained during January. Highest daily yields, 7·9±2·6 g dry weight m−2 day−1 and 7·0±1·2 g dry weight m−2 day−1, were obtained during September and May. A 35% decline of the yield was seen during midsummer (July), 4·8±1·2 g dry weight m−2 day−1. The average rate for the year was 5·15±1·7 g dry weight m−2 day−1. The protein content of the plants ranged from 30 to 38% per unit dry weight.Growth performance is discussed in relation to the prevailing climatic conditions.  相似文献   

18.
The growth characteristics of Haematococcus pluvialis Flotow were determined in batch culture. Optimal temperature for growth of the alga was between 25° and 28°C, at which the specific growth rate was 0.054 h?1. At higher temperatures, no cell division was observed, and cell diameter increased from 5 to 25 μm. The saturated irradiance for growth of the alga was 90 μmol quanta · m?2·s?1; under higher irradiances (e.g. 400 μmol quanta·m?2·s?1) astaxanthin accumulation was induced. Growth rate, cell cycle, and astaxanthin accumulation were significantly affected by growth conditions. Careful attention should be given to the use of optimal growth conditions when studying these processes.  相似文献   

19.
Four strains of marine microalgae commonly used as live feeds in hatcheries (Isochrysis sp. T.ISO, Tetraselmis suecica, Phaeodactylum tricornutum, Nannochloropsis sp.) were grown in a novel solid-state photobioreactor, the twin-layer system. Microalgae were immobilized by self adhesion to vertically oriented twin-layer modules which consisted of two different types of ultrathin layers, a macroporous source layer (glass fiber nonwoven) through which the culture medium was transported by gravity flow, and a microporous substrate layer (plain printing paper) which carried the algae on both surfaces of the source layer. This simple open cultivation system effectively separated the immobilized microalgae from the bulk of the growth medium and permitted prolonged cultivation of microalgae with average biomass yields of 10–15 g dry weight m?2 growth area after 14–25 days of cultivation. Algal biomass was harvested as fresh weight (with 72–84 % water content) without the need to pre-concentrate algae. No aeration or external CO2 supply was necessary, and due to the microporous substrate layer, no eukaryotic contaminations were observed during the experiment. All experiments were conducted in Germany under greenhouse conditions with natural sunlight. Small-scale growth experiments performed under the same conditions revealed that growth over most of the experimental period (24 days) was linear in all tested algae with growth rates (dry weight per square meter growth area) determined to be 0.6 g ?m?2?day?1 (Isochrysis), 0.8 g? m?2?day?1 (Nannochloropsis), 1.5 g ?m?2?day?1 (Tetraselmis), and 1.8 g? m?2?day?1 (Phaeodactylum). Due to its cost-effective construction and with further optimisation of design and productivity at technical scales, the twin-layer system may provide an attractive alternative to methods traditionally used to cultivate live microalgae.  相似文献   

20.
When acclimated to a continuous, superabundant food supply and constant temperature, Calanus pacificus Brodsky females produce eggs at a weight-specific rate ranging from 0.13 · day?1 at 8°C to 0.21 · day?1 at 15°C. Maximum weight-specific egg production rates do not change with seasonal changes in female body size. The relationship between egg production rate and food concentration is hyperbolic, with threshold and critical concentrations that are high relative to other species for which data are available. Food concentration and temperature influence spawning frequency (i.e., the time required for oocytes to mature) much more than the number of eggs in a single spawning event (i.e., clutch size). Clutch size is significantly related to female body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号