首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mobility of cell surface MHC class I molecules on HeLa cells was measured by fluorescence recovery after photobleaching (FRAP). The probe used for these studies was the phycobiliprotein R-phycoerythrin coupled to Fab fragments of a monoclonal antibody specific for human monomorphic MHC class I molecules. It was found that the recovery curves could be equally well fitted by either a random diffusion model with an immobile component or by an anomalous diffusion model. In the latter case, the anomalous diffusion exponent was consistent with that previously determined by single-particle tracking (SPT) experiments using the same probe (P. R. Smith, I. E. G. Morrison, K. M. Wilson, N. Fernandez, and R. J. Cherry. 1999. Biophys. J. 76:3331-3344). The FRAP experiments, however, yielded a considerably higher value of D(0), the diffusion coefficient for a time interval of 1 s. To determine whether the results were probe dependent, FRAP measurements were also performed with the same monoclonal antibody labeled with Oregon Green. These experiments gave similar results to those obtained with the phycoerythrin probe. FRAP experiments with the lipid probe 5-N-(octadecanoyl) aminofluoroscein (ODAF) bound to HeLa cells gave typical results for lipid diffusion. Overall, our observations and analysis are consistent with anomalous diffusion of MHC class I diffusion on HeLa cells, but quantitative differences between FRAP and SPT data remain to be explained.  相似文献   

2.
We used fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) techniques to compare diffusion of class I major histocompatibility complex molecules (MHC) on normal and alpha-spectrin-deficient murine erythroleukemia (MEL) cells. Because the cytoskeleton mesh acts as a barrier to lateral mobility of membrane proteins, we expected that diffusion of membrane proteins in alpha-spectrin-deficient MEL cells would differ greatly from that in normal MEL cells. In the event, diffusion coefficients derived from either FRAP or SPT analysis were similar for alpha-spectrin-deficient and normal MEL cells, differing by a factor of approximately 2, on three different timescales: tens of seconds, 1-10 s, and 100 ms. SPT analysis showed that the diffusion of most class I MHC molecules was confined on both cell types. On the normal MEL cells, the mean diagonal length of the confined area was 330 nm with a mean residency time of 40s. On the alpha-spectrin-deficient MEL cells, the mean diagonal length was 650 nm with a mean residency time of 45s. Thus there are fewer barriers to lateral diffusion on cytoskeleton mutant MEL cells than on normal MEL cells, but this difference does not strongly affect lateral diffusion on the scales measured here.  相似文献   

3.
We have studied the lateral mobility of class 1 major histocompatibility complex (MHC) proteins in the membranes of human Epstein-Barr virus-transformed B cells using fluorescence photobleaching recovery. Class I MHC antigens were labeled with either W6/32 monoclonal antibody or its Fab fragment directly conjugated to fluorescein isothiocyanate. The diffusion coefficient of class I antigens labeled with Fab fragments of W6/32 was identical to that of a lipid analogue, fluorescein phosphatidylethanolamine, and was 10-fold greater than that of antigens labeled with intact W6/32. Furthermore, antigens labeled with Fab fragments but not with intact W6/32 had fractional mobilities identical to that of the lipid probe. The lateral mobility of class I antigens was dependent on the time of incubation with fluorescent antibody and on the presence of antibody microaggregates. Finally, class I MHC proteins labeled with intact W6/32 but not with Fab fragments were immobilized in the membranes of most cells grown in suspension at high cell density. These results suggest that, in the unperturbed state, class I MHC antigens diffuse as rapidly as membrane lipid, i.e., without cytoskeletal constraint. Cross-linking with bivalent ligand and growth to high cell density may trigger membrane events leading to slowing and immobilization of these proteins.  相似文献   

4.
Fluorescence anisotropy measurements can elucidate the microenvironment of a membrane protein in terms of its rotational diffusion, interactions, and proximity to other proteins. However, use of this approach requires a fluorescent probe that is rigidly attached to the protein of interest. Here we describe the use of one such probe, a green fluorescent protein (GFP) expressed and rigidly held within the amino acid sequence of a major histocompatibility complex (MHC) class I molecule, H2L(d). We contrast the anisotropy of this GFP-tagged MHC molecule, H2L(d)GFPout, with that of an H2L(d) that was GFP-tagged at its C-terminus, H2L(d)GFPin. Both molecules fold properly, reach the cell surface, and are recognized by specific antibodies and T-cell receptors. We found that polarized fluorescence images of H2L(d)GFPout in plasma membrane blebs show intensity variations that depend on the relative orientation of the polarizers and the membrane normal, thus demonstrating that the GFP is oriented with respect to the membrane. These variations were not seen for H2L(d)GFPin. Before transport to the membrane surface, MHC class I associates with the transporter associated with antigen processing complex in the endoplasmic reticulum. The intensity-dependent steady-state anisotropy in the ER of H2L(d)GFPout was consistent with FRET homotransfer, which indicates that a significant fraction of these molecules were clustered. After MCMV-peptide loading, which supplies antigenic peptide to the MHC class I releasing it from the antigen processing complex, the anisotropy of H2L(d)GFPout was independent of intensity, suggesting that the MHC proteins were no longer clustered. These results demonstrate the feasibility and usefulness of a GFP moiety rigidly attached to the protein of interest as a probe for molecular motion and proximity in cell membranes.  相似文献   

5.
EB Brown  ES Wu  W Zipfel    WW Webb 《Biophysical journal》1999,77(5):2837-2849
Multiphoton fluorescence photobleaching recovery (MP-FPR) is a technique for measuring the three-dimensional (3D) mobility of fluorescent molecules with 3D spatial resolution of a few microns. A brief, intense flash of mode-locked laser light pulses excites fluorescent molecules via multiphoton excitation in an ellipsoidal focal volume and photobleaches a fraction. Because multiphoton excitation of fluorophores is intrinsically confined to the high-intensity focal volume of the illuminating beam, the bleached region is restricted to a known, three-dimensionally defined volume. Fluorescence in this focal volume is measured with multiphoton excitation, using the attenuated laser beam to measure fluorescence recovery as fresh unbleached dye diffuses in. The time course of the fluorescence recovery signal after photobleaching can be analyzed to determine the diffusion coefficient of the fluorescent species. The mathematical formulas used to fit MP-FPR recovery curves and the techniques needed to properly utilize them to acquire the diffusion coefficients of fluorescently labeled molecules within cells are presented here. MP-FPR is demonstrated on calcein in RBL-2H3 cells, using an anomalous subdiffusion model, as well as in aqueous solutions of wild-type green fluorescent protein, yielding a diffusion coefficient of 8.7 x 10(-7) cm(2)s(-1) in excellent agreement with the results of other techniques.  相似文献   

6.
We prepared single-labeled FITC derivatives of beta-2-microglobulin (b2m) and examined their interactions with class I MHC Ag H chains on living cells. Human b2m was reacted with FITC under mild conditions and separated by hydroxylapatite chromatography into three peaks containing single labeled derivatives of b2m peaks A, B, and C, and a peak containing the unmodified protein. The three fluorescent derivatives labeled the surfaces of cells bearing class I MHC Ag. The labeling was specific for class I MHC Ag as indicated by failure to label cells in the presence of excess unlabeled b2m and failure to label the HLA-negative cell lines Daudi and 721.221. Mouse cells labeled with fluorescent human b2m were recognized by mAb to the class I MHC Ag and by virus-restricted cytotoxic T lymphocytes, suggesting that labeling with the fluorescent b2m does not significantly alter the structure of class I MHC Ag or impair their ability to present viral antigens to cytotoxic T lymphocytes. We determined the kinetic and equilibrium binding parameters for the fluorescent b2m derivatives associating with the class I H chains of mouse and human cells. Peaks B and C exhibited biphasic binding to the mouse lymphoma cells EL-4(G-CSA-) (Kd1 = 1 x 10(-9) M; K2 = 1.5 to 3.0 x 10(-8) M whereas peak A bound to a small number of low affinity binding sites. In contrast to the biphasic binding observed with EL-4(G-CSA-), only monophasic binding was observed for peak C binding to RDM4 cells. Biphasic binding was also observed with the human B cell line LCL 721. Analysis of a series of LCL 721 class I MHC loss mutants and gene transferents revealed that the heterogeneity in binding is due to differences in the affinity of different class I encoded H chains for b2m.  相似文献   

7.
We report fluorescence correlation spectroscopy measurements of the translational diffusion coefficient of various probe particles in dilute and semidilute aqueous poly(vinyl alcohol) solutions. The range of sizes of the particles (fluorescent molecules, proteins, and polymers) was chosen to explore various length scales of the polymer solutions as defined by the polymer-polymer correlation length. For particles larger than the correlation length, we find that the diffusion coefficient, D, decreases exponentially with the polymer concentration. This can be explained by an exponential increase in the solution viscosity, consistent with the Stokes-Einstein equation. For probes on the order of the correlation length, the decrease of the diffusion coefficient cannot be accounted for by the Stokes-Einstein equation, but can be fit by a stretched exponential, D approximately exp(-alphacn), where we find n = 0.73-0.84 and alpha is related to the probe size. These results are in accord with a diffusion model of Langevin and Rondelez (Polymer 1978, 19, 1875), where these values of n indicate a good solvent quality.  相似文献   

8.
We have previously shown that the lateral diffusion, D, of the class I Major Histocompatibility Complex (MHC) glycoprotein H-2Ld is constrained by its glycosylation, when expressed in mouse L-cells. Removal of one or more of the 3 N-linked oligosaccharides of H-2Ld glycoproteins results in an increase in D. In order to further examine the influence of glycosylation on D, we compared lateral diffusion of H-2Ld expressed in wild-type CHO cells with lateral diffusion of the same molecule expressed in mutant CHO cells with aberrant surface glycosylation. In addition, we compared lateral diffusion of wild-type and unglycosylated H-2Ld antigens in these cells. In contrast to the large effect of glycosylation state on lateral diffusion of H-2Ld in mouse L-cells, there was little effect of glycosylation on lateral diffusion of H-2Ld in any of the CHO cells. This, together with similar results on hamster class I antigens, indicates that the constraints to D of H-2Ld and other class I MHC molecules are different in CHO cells than in L-cells. Measurements of lateral diffusion after treatment of cells with cytochalasin D make it clear that interactions between MHC class I molecules and a cytoskeleton are important in reducing the mobile fraction of diffusing molecules, R, though they cannot be shown to directly affect the diffusion coefficient, D.  相似文献   

9.
We succeeded in using 40 nm FRET (fluorescence resonance energy transfer) microspheres conjugated to antibodies as the fluorescent reporters to perform the multiplexing suspension array measurements on two simulants of biological threats, ricin (A chain) and a crude spore preparation of Bacillus globigii (Bg). The microspheres were impregnated with two types of fluorophores in equal number (approximately 140 fluorophores in total per microsphere) and displayed bright PE-like fluorescence via a fluorescence resonance energy transfer mechanism. Activated microspheres (aldehyde groups) were directly coupled to antibodies and used to form sandwich-type immunoassays in a suspension array. For the crude preparations of Bg, the assay sensitivity using antibody-conjugated microspheres is an order of magnitude higher than that using the conventional fluorescent reporter, R-phycoerythrin (PE). Using the microspheres, Bg at the concentration of 5 ng/mL can be easily detected. For ricin, the assay sensitivity was similar to that obtained using PE as the reporter, but washing the reaction mixtures resulted in the fluorescence signals that were 2-3 times higher compared to those using PE. Ricin at a concentration of 1 ng/mL can be readily identified. Importantly, the two simulants do not interfere with each other in the multiplexing experiments. The 40 nm FRET microspheres are a new sensitive alternative as fluorescent reporters for detection in suspension arrays.  相似文献   

10.
The analysis of cell types involved in cross-priming of particulate Ag is essential to understand and improve immunotherapies using microparticles. In this study, we show that murine splenic dendritic cells (DCs) as well as macrophages (MΦs) are able to efficiently endocytose poly(D,L-lactate-co-glycolate) acid (PLGA) microspheres (MS) and to cross-present encapsulated Ags in the context of MHC class I molecules in vitro. A comparison of purified CD8(+) and CD8(-) DCs indicated that both DC subtypes are able to present OVA-derived epitopes on MHC class I and II in vitro. To determine the contribution of DCs and MΦs to cross-priming of PLGA MS in vivo, DCs were depleted in transgenic CD11c-DTR mice, and MΦs were depleted by clodronate liposomes in wild-type mice before immunizing mice with OVA-encapsulated MS. Our results show that the depletion of DCs or MΦs alone only led to minor differences in the OVA-specific immune responses. However, simultaneous depletion of DCs and MΦs caused a strong reduction of primed effector cells, indicating a redundancy of both cell populations for the priming of PLGA MS-encapsulated Ag. Finally, we analyzed PLGA MS trafficking to draining lymph nodes after s.c. injection. It was evident that fluorescent particles accumulated within draining lymph nodes over time. Further analysis of PLGA MS-positive lymphatic cells revealed that mainly CD8(-) DCs and MΦs contained MS. Moreover, immune responses in BATF3 knockout mice lacking CD8(+) DCs were normal. The results presented in this work strongly suggest that in vivo cross-priming of PLGA MS-encapsulated Ag is performed by CD8(-) DCs and MΦs.  相似文献   

11.
Directed and Brownian movement of class I major histocompatibility complex (MHC) molecules on cell membranes is implicated in antigen presentation. Previous studies indicated that the class I MHC cytoplasmic tail imposes constraints on the molecule's diffusion. Here we used single particle tracking to study the mobility of the wild-type mouse H-2L(d) class I MHC molecule and of seven cytoplasmic tail variants. Six of the variants have cytoplasmic tails of four or seven residues (differing in net charge), and one is tailless, yet all are susceptible to confinement in membrane domains. However, truncation of the cytoplasmic tail to 0-4 residues decreases the proportion of particles exhibiting confined diffusion and increases the proportion exhibiting simple diffusion. Particularly for the truncated mutants (tail length of 0-7 residues), many of the particles have complex trajectories and do not move at a constant speed or in the same mode of diffusion throughout the observation period. Several particles of the tailless H-2L(d) mutant display a type of directed diffusion that is rarely observed for other H-2L(d) mutants. Taken together, these data show that even short cytoplasmic tails can influence markedly class I MHC mobility and that cytoplasmic tail length and sequence affect the molecule's diffusion in the membrane.  相似文献   

12.
Dynamic light-scattering study on polymerization process of muscle actin   总被引:2,自引:0,他引:2  
Globular actin (G-actin) polymerizes into a fibrous form (F-actin) under physiological salt conditions. The polymerization process of muscle actin was studied by a dynamic light-scattering method. The intensity correlation functions G2(tau) of scattered light from a G-actin solution containing 2 mM Tris-HCl (pH 8.0) and 0.1 mM ATP were analyzed by a cumulant expansion method, and the translational diffusion coefficient was determined to be D = (8.07 +/- 0.10) X 10(-7) cm2/s at 20 degrees C. This D value gave a diameter of 5.3 nm for spherical G-actin including a hydration layer. Polymerization of 1-3 mg/ml G-actin in a solution containing 10 mM Tris-HCl (pH 8.0), 0.2 mM ATP and 60 mM KCl was followed by successive measurements of G2(tau) for a data accumulation period of 60-300 s/run. The time evolution of G2(tau) was analyzed by a least-squares fitting to the field correlation function of a multiexponential form g1(tau) = sigma iAi exp(-gamma i tau) with gamma 1 greater than gamma 2 greater than 3 greater than ..., and the static scattering intensity I(t) = mean value of I as a function of time t after initiation of polymerization was decomposed as I(t) = mean value of I sigma iAi. At the early stage of polymerization, a two-exponential fit gave results indicating that component 1 came from G-actin and component 2 from F-actin growing linearly with t. At the middle stage of polymerization, a three-exponential fit gave the results that component 1 came from G-actin and possibly its small oligomers, component 2 from polymers with a number-average length Ln of about 900 nm which was independent of t, and component 3 from 'ghosts' in dynamic light scattering in a semidilute regime. Component 3 was concluded to arise from restricted motions of polymers with lengths much longer than Ln in cages formed by polymers giving component 2, and a fragmentation-elongation process of F-actin was suggested to start at the middle stage of polymerization, resulting in the size redistribution of F-actin.  相似文献   

13.
Cholesterol is a major constituent of plasma cell membranes and influences the functions of proteins residing in the membrane. To assess the role of cholesterol in phagocytosis and intracellular trafficking of liposomal antigen, macrophages were treated with inhibitors of cholesterol biosynthesis for various time periods and levels of cholesterol depletion were assessed by thin layer chromatography. In control macrophages, cholesterol was present in the plasma membrane and in intracellular stores, as visualised by staining with the cholesterol-binding compound filipin, whereas macrophages treated with cholesterol inhibitors failed to stain with filipin. However, these macrophages were still capable of phagocytosis as evidenced by their internalisation of fluorescent-labelled bacteria and liposome-encapsulated Texas red labelled-ovalbumin, L(TR-OVA). While fluorescent ovalbumin (OVA) was consistently transported to the Golgi in macrophages incubated with L(TR-OVA), in cells treated with cholesterol inhibitors, OVA remained spread diffusely throughout the cytoplasm. Even though the mean fluorescence intensity of MHC class I molecules on cholesterol inhibitor-treated macrophages was equivalent to that of the control macrophages, the amount of MHC class I-liposomal OVA-peptide complex detected on the cell surface of cholesterol inhibitor-treated macrophages, was only 45.6 +/- 7.4% (n = 4, mean +/- SEM) of control levels after intracellular processing of L(OVA). We conclude that cholesterol depletion does not eliminate phagocytosis or MHC class I surface expression, but does affect the trafficking and consequently the MHC class I antigen-processing pathway.  相似文献   

14.
The role of ligand affinity in altering αPS2CβPS integrins’ lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22 % and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins’ increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75 % slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99 % for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.  相似文献   

15.
Macromolecular crowding and size effects on probe microviscosity   总被引:1,自引:0,他引:1  
Development of biologically relevant crowding solutions necessitates improved understanding of how the relative size and density of mobile obstacles affect probe diffusion. Both the crowding density and relative size of each co-solute in a mixture will contribute to the measured microviscosity as assessed by altered translational mobility. Using multiphoton fluorescent correlation spectroscopy, this study addresses how excluded volume of dextran polymers from 10 to 500 kDa affect microviscosity quantified by measurements of calmodulin labeled with green fluorescent protein as the diffusing probe. Autocorrelation functions were fit using both a multiple-component model with maximum entropy method (MEMFCS) and an anomalous model. Anomalous diffusion was not detected, but fits of the data with the multiple-component model revealed separable modes of diffusion. When the dominant mode of diffusion from the MEMFCS analysis was used, we observed that increased excluded volume slows probe mobility as a simple exponential with crowder concentration. This behavior can be modeled with a single parameter, β, which depends on the dextran size composition. Two additional modes of diffusion were observed using MEMFCS and were interpreted as unique microviscosities. The fast mode corresponded to unhindered free diffusion as in buffer, whereas the slower agreed well with the bulk viscosity. At 10% crowder concentration, one finds a microviscosity approximately three times that of water, which mimics that reported for intracellular viscosity.  相似文献   

16.
Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.  相似文献   

17.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

18.
Subdiffusion and its causes in both in vivo and in vitro lipid membranes have become the focus of recent research. We report apparent subdiffusion, observed via single particle tracking (SPT), in a homogeneous system that only allows normal diffusion (a DMPC monolayer in the fluid state). The apparent subdiffusion arises from slight errors in finding the actual particle position due to noise inherent in all experimental SPT systems. A model is presented that corrects this artifact, and predicts the time scales after which the effect becomes negligible. The techniques and results presented in this paper should be of use in all SPT experiments studying normal and anomalous diffusion.  相似文献   

19.
20.
Recent studies have shown that MHC class I molecules play an important role in the protective immune response to Mycobacterium tuberculosis infection. Here we showed that mice deficient in MHC class Ia, but possessing MHC class Ib (K(b-/-)D(b-/-) mice), were more susceptible to aerosol infection with M. tuberculosis than control mice, but less susceptible than mice that lack both MHC class Ia and Ib (beta(2)m(-/-) mice). The susceptibility of K(b-/-)D(b-/-) mice cannot be explained by the failure of CD8(+) T cells (presumably MHC class Ib-restricted) to respond to the infection. Although CD8(+) T cells were a relatively small population in uninfected K(b-/-)D(b-/-) mice, most already expressed an activated phenotype. During infection, a large percentage of these cells further changed their cell surface phenotype, accumulated in the lungs at the site of infection, and were capable of rapidly producing IFN-gamma following TCR stimulation. Histopathologic analysis showed widespread inflammation in the lungs of K(b-/-)D(b-/-) mice, with a paucity of lymphocytic aggregates within poorly organized areas of granulomatous inflammation. A similar pattern of granuloma formation has previously been observed in other types of MHC class I-deficient mice, but not CD8alpha(-/-) mice. Thus, neither the presence of MHC class Ib molecules themselves, nor the activity of a population of nonclassical CD8(+) effector cells, fully restored the deficit caused by the absence of MHC class Ia molecules, suggesting a unique role for MHC class Ia molecules in protective immunity against M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号