首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The joint effects of parental gene fixation and consanguinity of mates upon the fitness of matings was examined in Mimulus guttatus. Plants from four populations were crossed at five levels of genetic relatedness, and five viability characters were scored in progeny. Parental gene fixation at 12 polymorphic allozyme loci was partitioned into local, subpopulation, and population components. A model is proposed wherein parental gene fixation influences distance-dependent crossing success. At a fixed locus, inbreeding is favored if natural selection caused allele fixation, or is disfavored if gene fixation was random. The distance between mates required to eliminate gene fixation depends upon patch size of fixation. When selective fixation and patch size differ among loci, an optimal crossing distance is possible. In M. guttatus, progeny viability generally decreased with greater relatedness between mates, but this decrease was often heterogeneous among populations. The highest pollen viability and the lowest seed set were found at an intermediate relatedness between mates. To determine whether parental gene fixation influences these crossing patterns, a type of mutational-load analysis was performed. Progeny fitness was regressed on parent F and fitness estimated at F = 1. This was done for each component of F, for a) crosses that maintain gene fixation and b) crosses that eliminate gene fixation. A multiplicative, composite measure of fitness indicates that, in M. guttatus, genes fixed during local or population differentiation favor outbreeding, while genes fixed during subpopulation differentiation favor inbreeding. This predicts that random mating within subpopulations confers highest progeny fitness, exclusive of between-population matings. However, predictions did not fit the observed patterns of crossing success very well, perhaps because gene fixation was relatively low or was not adequately measured at loci influencing fitness.  相似文献   

2.
To determine if DNA configuration, gene locus, and flanking sequences will affect homologous recombination in the phytopathogenic fungus Cercospora nicotianae, we evaluated and compared disruption efficiency targeting four cercosporin toxin biosynthetic genes encoding a polyketide synthase (CTB1), a monooxygenase/O-methyltransferase (CTB3), a NADPH-dependent oxidoreductase (CTB5), and a FAD/FMN-dependent oxidoreductase (CTB7). Transformation of C. nicotianae using a circular plasmid resulted in low disruption frequency. The use of endonucleases or a selectable marker DNA fragment flanked by homologous sequence either at one end or at both ends in the transformation procedures, increased disruption efficiency in some but not all CTB genes. A split-marker approach, using two DNA fragments overlapping within the selectable marker, increased the frequency of targeted gene disruption and homologous integration as high as 50%, depending on the target gene and on the length of homologous DNA sequence flanking the selectable marker. The results indicate that the split-marker approach favorably decreased ectopic integration and thus, greatly facilitated targeted gene disruption in this important fungal pathogen. The GenBank/EMBL/DDBJ accession numbers for the sequence data reported in this article are: CTB1, AY649543, CTB3, DQ355149, CTB5, DQ991507, and CTB7, DQ991509.  相似文献   

3.
The application of LFH-PCR (long flanking homology region-PCR) forBacillus subtilis gene disruption is presented. Without plasmid- or phage-vector construction, only by PCR, based on a DNA sequence retrieved fromB. subtilis genome data base, kanamycin resistance gene was inserted into two genes ofB. subtilis involved in sporulation,spoIIIE andspoIIIG. The effect of gene disruption on subtilisin expression was examined and the sporulation frequency of two mutants was compared to that of the host strain. For this purpose, only 2 or 3 rounds of PCR were required with 4 primers. We first demonstrated the possibility of LFH-PCR for rapid gene disruption to characterize an unknown functional gene ofB. subtilis or other prokaryote in the genomic era.  相似文献   

4.
An enzyme KfoG with unknown function is coded by the gene kfoG. Gene kfoG belongs to genes from region 2, which are responsible for structure of capsular polysaccharide. Only two enzymes, KfoG and KfoC, coded by genes from region 2, have a glycosyltransferase motif. KfoC is the bifunctional enzyme, which is able to add both GalNAc and GlcUA on nascent polysaccharide, termed chondroitin polymerase. KfoG was predicted to be a fructosyltransferase. The gene that codes the KfoG enzyme was disrupted using homological recombination and absence of this gene was confirmed on both DNA and RNA levels. After disruption no structural changes have been observed, what indicates that fructose branching of the chondroitin backbone is not caused by enzymes, which are coded by genes from region 2 of the K4 capsular gene cluster.  相似文献   

5.
6.
He W  Wu L  Gao Q  Du Y  Wang Y 《Current microbiology》2006,52(3):197-203
To clone and study the geldanamycin biosynthetic gene cluster in Streptomyces hygroscopicus 17997, we designed degenerate primers based on the conserved sequence of the ansamycin 3-amino-5-hydroxybenzoic acid (AHBA) synthase gene. A 755-bp polymerase chain reaction product was obtained from S. hygroscopicus 17997 genomic DNA, which showed high similarity to ansamycin AHBA synthase genes. Through screening the cosmid library of S. hygroscopicus 17997, two loci of separated AHBA biosynthetic gene clusters were discovered. Comparisons of sequence homology and gene organization indicated that the two AHBA biosynthetic gene clusters could be divided into a benzenic and a naphthalenic subgroup. Gene disruption demonstrated that the benzenic AHBA gene cluster is involved in the biosynthesis of geldanamycin. However, the naphthalenic AHBA genes in the genome of Streptomyces hygroscopicus 17997 could not complement the deficiency of the benzenic AHBA genes. This is the first report on the AHBA biosynthetic gene cluster in a geldanamycin-producing strain. W. He and L. Wu contributed equally to this work.  相似文献   

7.
Based on the analysis of the nifH gene nucleotide sequences from GenBank, a system of primers was developed that makes it possible to obtain 370- and 470-bp PCR fragments of the nifH gene of nitrogen-fixing bacteria and archaea. The effectiveness of the proposed system for revealing the presence of nifH genes was demonstrated by PCR on the DNA isolated from nitrogen-fixing prokaryotes for which the primary structure of these genes is known and which belong to different taxonomic groups. nifH sequences of nitrogen-fixing prokaryotes of the genera Xanthobacter, Beijerinckia, and Methanosarcina, for which the capacity for nitrogen fixation was demonstrated earlier, but no data existed on the nucleotide composition of these genes, were determined and deposited in GenBank.  相似文献   

8.
9.
10.
11.
In this study, we investigated the effects of proteinase gene disruption on heterologous protein production by Aspergillus oryzae. The human lysozyme (HLY) was selected for recombinant production as a model for the heterologous protein. A tandem HLY construct fused with α-amylase (AmyB) was expressed by A. oryzae in which the Kex2 cleavage site was inserted at the upstream of HLY. HLY was successfully processed from AmyB and produced in the medium. We performed a systematic disruption analysis of five proteinase genes (pepA, pepE, alpA, tppA, and palB) in the HLY-producing strain with the adeA selectable marker. Comparative analysis indicated that disruption of the tppA gene encoding a tripeptidyl peptidase resulted in the highest increase (36%) in the HLY production. We further deleted the tppA gene in the pepE or palB disruptant with another selectable marker, argB. Consequently, a double disruption of the tppA and pepE genes led to a 63% increase in the HLY production compared to the control strain. This is the first study to report that the double disruption of the tppA and pepE genes improved the production level of a heterologous protein by filamentous fungi. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
A novel two-component signal transduction system amrB-amkB was cloned from rifamycin SV-producing Amycolatopsis mediterranei U32, and their biochemical functions as a response regulator and a histidine protein kinase, respectively, were proven. The amrB disruption mutant was generated by insertional inactivation with the aparmycin resistance gene. The metabolic response to the absence of amrB gene was determined by a biochemical profiling technique in which the concentration changes of metabolic intermediates were measured by gas chromatography with time-of-flight mass spectrometry (GC/TOF-MS). Although the phenotype analyses of the amrB gene disruption mutant showed no significant change with respect to rifamycin SV production and morphological differentiation, the global metabolomic analyses found the concentration levels of some key intermediates in the TCA cycle and glycolysis pathway were affected by an amrB gene disruption event. The primary results suggested that amrB-amkB genes might be involved in the regulation of central carbohydrate metabolism in A. mediterranei U32.  相似文献   

13.
14.
Aspergillus oryzae has received attention as a host for heterologous protein production. However, A. oryzae has 134 protease genes, which is recognized to be one of the major reasons for the proteolytic degradation of heterologously produced proteins. We previously reported that double disruption of the protease genes (tppA and pepE) improved heterologous protein (human lysozyme) production by A. oryzae. In this study, we performed successive round of five protease genes (tppA, pepE, nptB, dppIV, and dppV) disruption in A. oryzae by pyrG marker recycling with highly efficient gene-targeting background (ΔligD). The multiple disruption of protease genes were confirmed by Southern blot analysis. Furthermore, the quintuple protease gene disruptants showed the maximum production level of bovine chymosin (CHY) that was 34% higher than those of the double protease gene disruptant (ΔtppA ΔpepE). Consequently, we successfully constructed a multiple protease gene disruptant bearing enhanced levels of CHY productivity. We presented the first evidence that the quintuple disruption of the protease genes improved the production level of a heterologous protein by A. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Summary Vegetative incompatibility is a lethal reaction that destroys the heterokaryotic cells formed by the fusion of hyphae of non-isogenic strains in many fungi. That incompatibility is genetically determined is well known but the function of the genes triggering this rapid cell death is not. The two allelic incompatibility genes, s and S, of the fungus Podospora anserina were characterized. Both encode 30 kDa polypeptides, which differ by 14 amino acids between the two genes. These two proteins are responsible for the incompatibility reaction that results when cells containing s and S genes fuse. Inactivation of the s or S gene by disruption suppresses incompatibility but does not affect the growth or the sexual cycle of the mutant strains. This suggests that these incompatibility genes have no essential function in the life cycle of the fungus.  相似文献   

16.
Ganoderma lucidum is an important medicinal mushroom in traditional Chinese medicine. However, the lack of adequate genetic tools has hindered molecular genetic research in and the genetic modification of this species. Here, we report that the presence of an intron is necessary for the efficient expression of the heterologous phosphinothricin-resistance and green fluorescent protein genes in G. lucidum. Moreover, we improved the CRISPR/Cas9-mediated gene disruption frequency in G. lucidum by adding an intron upstream of the Cas9 gene. Our results showed that the disruption frequency of the orotidine 5’-monophosphate decarboxylase gene (ura3) in transformants containing the glyceraldehyde-3-phosphate dehydrogenase gene intron in the Cas9 plasmid is 14–18 in 107 protoplasts, which is 10.6 times higher than that in transformants without any intron sequence. Furthermore, genomic fragment deletions in the ura3 and GL17624 genes were achieved via a dual sgRNA-directed CRISPR/Cas9 system in G. lucidum. We achieved a ura3 deletion frequency of 36.7% in G. lucidum. The developed method provides a powerful platform to generate gene deletion mutants and will facilitate functional genomic studies in G. lucidum.  相似文献   

17.
Mitochondrial genes are widely used in taxonomy and systematics because high mutation rates lead to rapid sequence divergence and because such changes have long been assumed to be neutral with respect to function. In particular, the nucleotide sequence of the mitochondrial gene cytochrome c oxidase subunit 1 has been established as a highly effective DNA barcode for diagnosing the species boundaries of animals. Rarely considered in discussions of mitochondrial evolution in the context of systematics, speciation, or DNA barcodes, however, is the genomic architecture of the eukaryotes: Mitochondrial and nuclear genes must function in tight coordination to produce the complexes of the electron transport chain and enable cellular respiration. Coadaptation of these interacting gene products is essential for organism function. I extend the hypothesis that mitonuclear interactions are integral to the process of speciation. To maintain mitonuclear coadaptation, nuclear genes, which code for proteins in mitochondria that cofunction with the products of mitochondrial genes, must coevolve with rapidly changing mitochondrial genes. Mitonuclear coevolution in isolated populations leads to speciation because population‐specific mitonuclear coadaptations create between‐population mitonuclear incompatibilities and hence barriers to gene flow between populations. In addition, selection for adaptive divergence of products of mitochondrial genes, particularly in response to climate or altitude, can lead to rapid fixation of novel mitochondrial genotypes between populations and consequently to disruption in gene flow between populations as the initiating step in animal speciation. By this model, the defining characteristic of a metazoan species is a coadapted mitonuclear genotype that is incompatible with the coadapted mitochondrial and nuclear genotype of any other population.  相似文献   

18.
We describe a versatile strategy for generating gene replacement mutants in the phytopathogenic fungus Ustilago maydis. The system includes the choice of 32 different insertion cassettes for genetic engineering purposes, such as gene disruption and more sophisticated insertions of reporter genes, heterologous promoters or combinations of the two. PCR-amplified flanking sequences needed for homologous recombination are ligated to the respective insertion cassettes via Sfi I sites. As proof of principle we generated two replacement mutants in which the endogenous promoter of the pheromone gene mfa1 drives expression of the Green Fluorescent Protein gene (gfp). Simultaneously, expression of the mfa1 ORF is controlled either by the carbon source-regulated crg1 promoter or the nitrogen source-regulated nar1 promoter. In both cases gfp expression was pheromone-inducible and pheromone expression was only detected when the heterologous promoters were active.Communicated by G. JürgensThe first two authors contributed equally to this work  相似文献   

19.
20.
Single‐gene speciation is considered to be unlikely, but an excellent example is found in land snails, in which a gene for left‐right reversal has given rise to new species multiple times. This reversal might be facilitated by their small population sizes and maternal effect (i.e., “delayed inheritance,” in which an individual's phenotype is determined by the genotype of its mother). Recent evidence suggests that a pleiotropic effect of the speciation gene on antipredator survival may also promote speciation. Here we theoretically demonstrate that, without a pleiotropic effect, in small populations the fixation probability of a recessive mutant is higher than a dominant mutant, but they are identical for large populations and sufficiently weak selection. With a pleiotropic effect that increases mutant viability, a dominant mutant has a higher fixation probability if the strength of viability selection is sufficiently greater than that of reproductive incompatibility, whereas a recessive mutant has a higher fixation probability otherwise. Delayed inheritance increases the fixation probability of a mutant if viability selection is sufficiently weaker than reproductive incompatibility. Our results clarify the conflicting effects of viability selection and positive frequency‐dependent selection due to reproductive incompatibility and provide a new perspective to single‐gene speciation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号