首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent pharetronid sponges were regarded as relict species in tropical and subtropical waters, inhabiting cryptic habitats on coral reefs and in caves. More recent findings of a new species of the genus Plectroninia off northern Norway, with an inner fused skeleton have changed that view. Recent investigations on the sponge fauna of the “Propeller Mound”, northern Porcupine Seabight, focusing on sponges growing on the azooxanthellate cold-water coral Lophelia pertusa (Linné 1758) and Madrepora oculata Linné 1758, established the presence of a species of Plectroninia new to science. Its status as a common species within this deep-water coral habitat and the general status of the genus Plectroninia are discussed.  相似文献   

2.
A basic paradigm in behavioral ecology is that organisms expand their distribution as preferred sites become saturated with individuals that reduce the availability of resources (e.g., shelter, prey) on a per capita basis. Previous fish community studies at Stellwagen Bank National Marine Sanctuary have shown that juvenile Acadian redfish Sebastes fasciatus (<20cm total length; TL) were primarily associated with boulder reefs that have deep interstices amongst the boulders; and that redfish expanded their distribution to adjacent gravel habitats when local abundance on reefs was high. Multibeam and sidescan sonar surveys in Stellwagen Basin (primarily a cohesive mud seafloor) have shown that discrete small areas of the basin floor are composed of mud draped gravel and partially buried boulders. Linear video transects using remotely operated vehicles and a video/photographic equipped grab sampler across five of these sites in 1997 showed that exposed boulders do not have crevices along their lower margins and are surrounded by dense patches of cerianthid anemones, Cerianthus borealis. These anemone patches are not present on the surrounding mud seafloor. Video image data showed that late juvenile redfish (11–20cm TL) occurred on boulder reefs as well as in the dense cerianthid patches but not on unstructured mud habitat (without cerianthid anemones). Comparisons of boulder reef and cerianthid habitats in 1998 showed that early demersal phase (0-year) redfish (0–10cm TL) occurred only on reefs but late juveniles occurred both on the reefs and in dense cerianthid habitats. Adult size classes (>20cm TL) also occurred in dense cerianthid habitats. Two explanations for these distributions can be advanced. The simplest is that redfish use both boulder and cerianthid habitats on an encounter basis, regardless of habitat saturation or predation pressure. Alternatively, boulder reefs serve as recruitment habitats and cerianthid habitats serve as a conduit for redfish moving away from saturated boulder reef sites, essentially serving as elements of a 'redfish pump'.  相似文献   

3.
Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral (Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations’ connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a ‘focal species’ to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.  相似文献   

4.
The Northwestern Hawaiian Islands (NWHI) are considered to be among the most pristine coral reef ecosystems remaining on the planet. These reefs naturally contain a high percent cover of algal functional groups with relatively low coral abundance and exhibit thriving fish communities dominated by top predators. Despite their highly protected status, these reefs are at risk from both direct and indirect anthropogenic sources. This study provides the first comprehensive data on percent coverage of algae, coral, and non-coral invertebrates at the species level, and investigates spatial diversity patterns across the archipelago to document benthic communities before further environmental changes occur in response to global warming and ocean acidification. Monitoring studies show that non-calcified macroalgae cover a greater percentage of substrate than corals on many high latitude reef sites. Forereef habitats in atoll systems often contain high abundances of the green macroalga Microdictyon setchellianum and the brown macroalga Lobophora variegata, yet these organisms were uncommon in forereefs of non-atoll systems. Species of the brown macroalgal genera Padina, Sargassum, and Stypopodium and the red macroalgal genus Laurencia became increasingly common in the two northernmost atolls of the island chain but were uncommon components of more southerly islands. Conversely, the scleractinian coral Porites lobata was common on forereefs at southern islands but less common at northern islands. Currently accepted paradigms of what constitutes a “healthy” reef may not apply to the subtropical NWHI, and metrics used to gauge reef health (e.g., high coral cover) need to be reevaluated.  相似文献   

5.
Fifteen Lophelia reefs from offshore to coastal areas off northern Norway were studied using video. Health status of the coral habitat (degree of physical impact, % cover of living tissue, colony size), occurrence of trawl marks and lost fishing gear, height of coral colonies and associated fauna were analysed from 44 video-lines. Fishing impact was more frequent on the offshore reefs (36.5% of the observed areas) than those in the coastal reefs (0.6%). The most visible effects of fishing were broken and displaced coral colonies. At some sites only small scattered fragments of live corals were observed, indicating recent impact. The mean colony height of Lophelia and gorgonian corals at impacted sites was around half the size of those at non-impacted sites. Both species richness and abundance was higher at non-impacted coral habitats compared to impacted. The actinarian Protanthea simplex and unidentified brittlestars were the only taxa with higher abundance on impacted compared with non-impacted habitats. The reefs at the offshore location were protected against bottom trawling in 2009 through the establishment of a marine protected area (MPA), but a general ban against trawling on known coral reefs had already been implemented in 1999. In the MPA, signs of regrowth were observed. Most of the observed damage probably occurred over 10 years earlier. Results show that live and non-impacted cold water coral reefs have an important ecological function by enhancing the local biodiversity and fish abundance. Preventing further damage to impacted reefs may lead to full recovery within a few decades.  相似文献   

6.
7.
Artificial reefs are often promoted as mitigating human impacts in coastal ecosystems and enhancing fisheries; however, evidence supporting their benefits is equivocal. Such structures must be compared with natural reefs in order to assess their performance, but past comparisons typically examined artificial structures that were too small, or were immature, relative to the natural reefs. We compared coral and fish communities on two large (>400,000 m3) and mature (>25 year) artificial reefs with six natural coral patches. Coral cover was higher on artificial reefs (50%) than in natural habitats (31%), but natural coral patches contained higher species richness (29 vs. 20) and coral diversity (H′ = 2.3 vs. 1.8). Multivariate analyses indicated strong differences between coral communities in natural and artificial habitats. Fish communities were sampled seasonally for 1 year. Multivariate fish communities differed significantly among habitat types in the summer and fall, but converged in the winter and spring. Univariate analysis indicated that species richness and abundance were stable throughout the year on natural coral patches but increased significantly in the summer on artificial reefs compared with the winter and spring, explaining the multivariate changes in community structure. The increased summer abundance on artificial reefs was mainly due to adult immigration. Piscivores were much more abundant in the fall than in the winter or spring on artificial reefs, but had low and stable abundance throughout the year in natural habitats. It is likely that the decreased winter and spring abundance of fish on the artificial reefs resulted from both predation and emigration. These results indicate that large artificial reefs can support diverse and abundant coral and fish communities. However, these communities differ structurally and functionally from those in natural habitats, and they should not be considered as replacements for natural coral and fish communities.  相似文献   

8.
Population outbreaks of crown-of-thorns starfish (Acanthaster planci L.) represent one of the most significant biological disturbances on tropical coral reefs and have the potential to devastate coral communities, thereby altering the biological and physical structure of reef habitats. This study reports on changes in area cover, species diversity and taxonomic composition of corals during an outbreak of A. planci at Lizard Island, in the northern Great Barrier Reef, Australia. Mean coral cover declined by 28.8% across ten locations studied. However, densities of A. planci, and their effects on local coral assemblages, were very patchy. Declines in coral cover were mostly due to the selective removal of certain coral taxa (mainly Acropora and Pocilloporidae corals); such that the greatest coral loss occurred at locations with highest initial cover of preferred coral prey. Most notably, coral assemblages in back-reef locations were transformed from topographically complex staghorn Acropora-dominated habitats, to relatively depauperate assemblages dominated by alcyonacean soft corals. Although coral loss was greatest among formerly dominant taxa (especially Acropora), effects were sufficiently widespread across different coral taxa, such that overall coral diversity tended to decline. Clearly, moderate outbreaks of A. planci have the potential to greatly alter community structure of coral communities even if they do not devastate live corals. Recovery in this instance is expected to be very rapid given that all coral taxa persisted, and effects were greatest among fast growing corals.  相似文献   

9.
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.  相似文献   

10.
Marginal coral reef systems may provide valuable insights into the nature of ecosystem processes in systems on the trajectory towards a phase shift to an alternate ecosystem state. This study investigates the process of herbivory in a marginal coral reef system in the Keppel Islands at the southern end of the Great Barrier Reef. Branching Acropora coral and the brown macroalga Lobophora variegata occupied up to 95% of the reef crest substratum at the three surveyed reefs. Feeding rates of herbivorous fishes and removal rates of Lobophora were directly quantified within areas of branching Acropora and on planar surfaces. Feeding rates by herbivorous fishes were habitat dependent with the highest bite rates being found in planar habitats for both Lobophora and the epilithic algal matrix (EAM) by 1–2 orders of magnitude, respectively. Feeding rates on Lobophora were, however, much lower than rates on the EAM. The low rates of Lobophora removal and significantly lower rates of herbivory in branching habitats were consistent with the high biomass of this brown alga throughout the Keppel Islands and with its distribution on reef crests, where Lobophora biomass was 20 times greater in branching than in planar habitats. This lack of feeding by herbivorous fishes within branching coral habitats in the Keppel Islands contrasts with the typical role of coral and topographic complexity on herbivores on coral reefs and highlights the potential for complex interactions between algae, corals and fishes on coral reefs. On marginal systems, herbivory may modify algal distributions but may be unable to contain the proliferation of algae such as Lobophora.  相似文献   

11.
Habitat loss due to land reclamation often occurs in sandy coral reef shore zones. The giant sea anemone Stichodactyla gigantea, which harbors the false clown anemonefish Amphiprion ocellaris, both of which are potentially flagship species, inhabit these places. To assess habitat quality for S. gigantea, we examined correlative associations between the number and the body size of S. gigantea and the amount of habitat types in fine-scale seascape composition quantified from an enlarged section of a high-resolution (1/2,500) color aerial photograph of the shallow shore zone of Shiraho Reef, Ishigaki Island, Japan. This study confirmed that anemones were most abundant at the edges of dense seagrass beds characterized by shallow sandy bottoms, rock beds, and sparse seagrass beds, while they were less abundant in coral patch reefs. However, anemones inhabiting coral patch reefs were significantly larger and their rate of disappearance over 3 years was lower than those inhabiting other habitats. This suggests that coral patch reefs may be more suitable habitats supporting larger animals and greater persistence of S. gigantea. The visual census techniques applied here, combined with aerial photography and image-analysis software, may be useful as a simple analytical tool for local assessment of suitable habitats for relatively small-bodied marine fauna in shallow-water seascapes.  相似文献   

12.
Coral reef banks may form an important component of mesophotic coral ecosystems (MCEs) in the Caribbean, but remain poorly explored relative to shallower reefs and mesophotic habitats on slopes and walls. Consequently, the processes structuring mesophotic coral reef communities are not well understood, particularly the role of disturbance. A large and regionally important mesophotic system, the Hind Bank Marine Conservation District (MCD), St. Thomas, USVI, was systematically surveyed. Data were used to construct a comprehensive benthic habitat map for the MCD, describe the abiotic and biotic components of the benthos among habitats, and investigate patterns of coral health among habitats. Two-thirds of the MCD (23.6 km2) was found to be dense coral reef (Coral Cover = 24.1%) dominated by the Montastraea annularis species complex. Coral reef ecosystems were topographically complex, but could be classified into distinct habitat types, including high coral banks (35.8% of the MCD) and two large novel coral reef habitat types corresponding to an extremely flat basin (18%) and a highly rugose hillock basin (6.5%), containing thousands of coral knolls (2–10 m high). An extreme disease event with undescribed signs of mortality occurred on 47% of coral reefs and reached a high prevalence in affected areas (42.4% ± 6.3 SE, N = 26). The disease was significantly clustered in the basin habitats of the western MCD (global Moran’s I = 0.32, P < 0.01). Observations of the spatial pattern suggested that the driver was specific to the basin habitats and may have been caused by a coherent abiotic event.  相似文献   

13.
Coral reefs are renowned as complex ecosystems with an extremely large biodiversity. Parasite-host relationships contribute substantially to this, but are poorly known. We describe the results of a study in which approximately 60,000 corals were searched for parasitic Leptoconchus snails (Gastropoda: Coralliophilidae) in Indo-West Pacific waters of Egypt, the Maldives, Thailand, Palau and Indonesia. We discovered an adaptive radiation of 14 snail species, each of which lives in species-specific association with one or more of 24 mushroom coral species. The 14 snail species are described as new to science under the names Leptoconchus inactiniformis sp. nov., L. inalbechi sp. nov., L. incrassa sp. nov., L. incycloseris sp. nov., L. infungites sp. nov., L. ingrandifungi sp. nov., L. ingranulosa sp. nov., L. inlimax sp. nov., L. inpileus sp. nov., L. inpleuractis sp. nov., L. inscruposa sp. nov., L. inscutaria sp. nov., L. intalpina sp. nov., and L. massini sp. nov. Their separation is based on indisputable molecular differences, whereas the rudimentary shell characters or impoverished anatomical details do not allow identification. The coral hosts also serve to distinguish the snail species, as none of the former was found to contain more than one of the latter. The complexity of coral reefs is still underrated, as is shown here by the application of DNA taxonomy as an indispensable approach to unravel cryptic radiations, which must be known in order to understand the functioning of the ecosystem.  相似文献   

14.
Seascape-scale trophic links for fish on inshore coral reefs   总被引:2,自引:0,他引:2  
It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0–2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25–44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves (R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14–78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8–55 % to a fish species found only on reefs (Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.  相似文献   

15.
Abstract Boating activities are an increasing source of physical damage to coral reefs worldwide. The damage caused by ship groundings can be significant and may result in a shift in reef structure and function. In this study we evaluate the status of two restoration projects established in 1995, 6 years after two freighters, the M/V Maitland and the M/V Elpis, ran aground on reefs of the Florida Keys National Marine Sanctuary. Our approach includes field monitoring in support of simulation model development to assess the effectiveness of the restoration efforts. A population model was developed for the coral Porites astreoides to project the convergence rates of coral abundance and population size structure between the restored and surrounding reference habitats. Coral communities are developing rapidly on the restoration structures. Species richness and abundance of the dominant coral, P. astreoides, were nearly indistinguishable between the restoration structures and reference habitats after only 6 years. However, although abundance and size structure of P. astreoides populations are rapidly approaching those of the reference habitats (a convergence in size structure within 10 years was simulated), maximum coral size will take twice as long to converge for this species. The sensitivity of the model to maximum recruitment rates highlights the importance of recruitment on the recovery rates of restored habitats, suggesting that special attention should be afforded to provide coral recruits with appropriate recruitment substrate at the time of restoration. Finally, the rates of convergence and, hence, the level of success of a restoration effort were shown to be influenced not only by the recruitment and survivorship rates of corals on the restoration structures but by the characteristics of the reference population as well. Accordingly, reference populations ought to be considered a “moving target” against which restoration success has to be measured dynamically. The simple, cost‐effective, monitoring–modeling approach presented here can provide the necessary tools to assess the current status of a restoration effort and to project the time required for coral populations to resemble those found on undamaged reference habitats  相似文献   

16.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

17.

Environmental clines such as latitude and depth that limit species’ distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems (~30–150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish (Stegastes partitus) ranging from shallow shelf (SS, <10 m) and deep shelf (DS, 20–30 m) habitats in the Florida Keys to mesophotic depths (MP, 60–70 m) at Pulley Ridge on the west Florida Shelf. Diet, behavior, and potential energetic trade-offs differed across study sites, but did not always have a monotonic relationship with depth, suggesting that some drivers of habitat suitability are decoupled from depth and may be linked with geographic location or the local environment. Feeding and diet composition differed among depths with the highest consumption of annelids, lowest ingestion of appendicularians, and the lowest gut fullness in DS habitats where predator densities were highest and fish exhibited risk-averse behavior that may restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  相似文献   

18.
We report the first discovery of coralline sponges from Pleistocene reef limestones of Vanuatu. Sponges of the genus Acanthochaetetes were identified from two reef terraces of Middle and Late Pleistocene age. As these sponges document cryptic habitats in modern coral reefs, they may be index fossils of cryptic habitats in the Pleistocene as well, thereby providing clues on growth conditions in fossil reefs. The small size of the discovered specimens may be attributed to the transient nature of their cryptic habitats, either due to reef growth or the occurrence of an unusual event.  相似文献   

19.
Nonreef habitats such as mangroves, seagrass, and macroalgal beds are important for foraging, spawning, and as nursery habitat for some coral reef fishes. The spatial configuration of nonreef habitats adjacent to coral reefs can therefore have a substantial influence on the distribution and composition of reef fish. We investigate how different habitats in a tropical seascape in the Philippines influence the presence, density, and biomass of coral reef fishes to understand the relative importance of different habitats across various spatial scales. A detailed seascape map generated from satellite imagery was combined with field surveys of fish and benthic habitat on coral reefs. We then compared the relative importance of local reef (within coral reef) and adjacent habitat (habitats in the surrounding seascape) variables for coral reef fishes. Overall, adjacent habitat variables were as important as local reef variables in explaining reef fish density and biomass, despite being fewer in number in final models. For adult and juvenile wrasses (Labridae), and juveniles of some parrotfish taxa (Chlorurus), adjacent habitat was more important in explaining fish density and biomass. Notably, wrasses were positively influenced by the amount of sand and macroalgae in the adjacent seascape. Adjacent habitat metrics with the highest relative importance were sand (positive), macroalgae (positive), and mangrove habitats (negative), and fish responses to these metrics were consistent across fish groups evaluated. The 500‐m spatial scale was selected most often in models for seascape variables. Local coral reef variables with the greatest importance were percent cover of live coral (positive), sand (negative), and macroalgae (mixed). Incorporating spatial metrics that describe the surrounding seascape will capture more holistic patterns of fish–habitat relationships on reefs. This is important in regions where protection of reef fish habitat is an integral part of fisheries management but where protection of nonreef habitats is often overlooked.  相似文献   

20.
Predatory invertebrates play a significant role in the organisation of aquatic communities. However, their ecology is poorly known even for many common taxa. We examined the meso-habitat use and aspects of movement activity of two common predatory water bug species Ilyocoris cimicoides (L., 1758) and Nepa cinerea L., 1758 under field and laboratory conditions in order to assess the effect of the patchiness on habitat choice. Ilyocoris cimicoides preferred open habitats, rich in submerged vegetation, without submerged terrestrial materials. Shaded habitats such as under trees, with moderately dense vegetation and submerged branches, were favoured by N. cinerea. Both laboratory and field data indicated differences in the short-term and similarity in the long-term movement behaviour of the two species. In the short-term, I. cimicoides moved frequently, while N. cinerea moved rarely, but the distance visited over the course of a longer time span is comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号