首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous amino acid release was measured in developing cerebellar neuronal cells in primary culture. In the presence of 25 mM K+ added to the culture medium, cerebellar cells survived more than 3 weeks and showed a high level of differentiation. These cultures are highly enriched in neurons, and electron-microscopic observation of these cells after 12 days in vitro (DIV) confirmed the presence of a very large proportion of cells with the morphological characteristics of granule cells, making synapses containing many synaptic vesicles. Synaptogenesis was also confirmed by immunostaining the cells with antisera against synapsin I and synaptophysin, two proteins associated with synaptic vesicles. From these cultures, endogenous glutamate release stimulated by 56 mM K+ was already detected after only a few days in culture, the maximal release value (1,579% increase over basal release) being reached after 10 DIV. In addition to that of glutamate, the release of aspartate, asparagine, alanine, and, particularly, gamma-aminobutyric acid (GABA) was stimulated by 56 mM K+ after 14 DIV, but to a lesser extent. No increase in serine, glutamine, taurine, or tyrosine release was observed during K+ depolarization. The effect of K+ on amino acid release was strictly Ca2+-dependent. Stimulation of the cells with veratridine resulted in a qualitatively similar effect on endogenous amino acid release. In the absence of Ca2+, 30% of the veratridine effect persisted. The Ca2+-dependent release was quantitatively similar after stimulation by veratridine and K+. Treatment of cerebellar cells with tetanus toxin (5 micrograms/ml) for 24 h resulted in a total inhibition of the Ca2+-dependent component of the glutamate release evoked by K+ or veratridine. It is concluded that glutamate is the main amino acid neurotransmitter of cerebellar cells developed in primary culture under the present conditions and that glutamate is probably mainly released through the exocytosis of synaptic vesicles.  相似文献   

2.
Abstract: Upon addition of the cardiac glycoside ouabain to cultured cerebellar granule cells, an immediate increase in intracellular free sodium is evoked mediated by two pathways, a voltage-sensitive channel blocked by tetrodotoxin and a channel sensitive to flunarizine. Ouabain induces a steady plasma membrane depolarization in low Ca2+ medium; whereas in the presence of Ca2+, a distinct discontinuity is observed always preceded by a large increase in intracellular free Ca2+ ([Ca2+]c). The plateau component of the increase can be inhibited additively by the L-type Ca2+ channel antagonist nifedipine, the spider toxin Aga-Gl, and the NMDA receptor antagonist MK-801. Single-cell imaging reveals that the [Ca2+]c increase occurs asynchronously in the cell population and is not dependent on a critical level of extracellular glutamate or synaptic transmission between the cells. A prolonged release of glutamate is also observed that is predominantly Ca2+ dependent for the first 6–10 min after the evoked increase in [Ca2+]c. This release is four times as large as that observed with 50 m M KCl and is predominantly exocytotic because release was inhibited by tetanus toxin, the V-type ATPase inhibitor bafilomycin, and Aga-Gl. It is proposed, therefore, that ouabain induces a period of membrane excitability culminating in a sustained exocytosis above that observed upon permanent depolarization with KCl.  相似文献   

3.
Abstract: Metabotropic glutamate receptor (type 1; mGluR1 ) is expressed predominantly in the hippocampus and the cerebellum. Using cultured cerebellar granule cells, we investigated the regulation of the mGluR1 mRNA expression. Levels of mGluR1 mRNA were decreased to less than half by high potassium stimulation and by glutamate and quisqualate. Although these glutamate receptor agonists tested are also known to cause neuronal cell death in culture, the effect of cell death cannot explain the observed reduction in mGluR1 mRNA because of the following reasons: (a) antagonists of N -methyl-D-aspartate and non- N -methyl-D-aspartate receptors inhibited cell death, but not the reduction of the level of mGluR1 mRNA; (b) mGluR1 mRNA returned to its initial level 48 h after the agonist application; and (c) the mRNA level of one of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors (GluR1) was not altered by these conditions. Therefore, we conclude that the glutamate or quisqualate stimulation can specifically inhibit the expression of mGluR1 mRNA. The dose response of quisqualate for the reduction in mGluR1 mRNA is consistent with that for inositol phosphate formation stimulated through the cloned mGluR1 . The mRNA reduction did not require extracellular calcium. Desensitization of mGluR1 with phorbol ester abolished the mRNA reduction. These results suggest that the reduction in mGluR1 mRNA is mediated by the activation of the metabotropic receptor itself.  相似文献   

4.
Abstract: The mechanism of glutamate release from cultured cerebellar granule neurones in response to a chemical model of ischaemia (10 m M 2-deoxyglucose plus 1 m M sodium cyanide) was investigated. In the first 2 min of ischaemia, release of preloaded d -[3H]aspartate could be extensively attenuated by tetanus toxin and bafilomycin A1 and was dependent on the activation of Ca2+ channels sensitive to the "Q" type Ca2+ channel antagonist, ω-conotoxin-MVIIC. During this period, ATP/ADP ratios fell rapidly. The extent of release in the first 2 min was comparable to that evoked by 2-min depolarization by 50 m M KCl. Free Ca2+ concentrations, determined in neurites and somata, did not increase until after 2 min. The neurite increase in cellular Ca2+ precedes that of the cell somata. Release of d -[3H]aspartate was partially inhibited by the NMDA receptor antagonist MK-801, which also delayed the increase in free Ca2+ concentration. Prolonging the period of ischaemia to 6 and 10 min produced no further increase in the apparently exocytotic component of release, but initiated an extensive nonexocytotic release of the amino acid. Studies with the synaptic vesicle membrane probe FM1-43 in which released amino acid was removed by superfusion indicated that Ca2+-dependent exocytosis was delayed in this system. It is concluded that chemical ischaemia initiates an initial exocytotic followed by nonexocytotic release and that the former is facilitated by NMDA receptor activation. These events occur in cells that are still able to exclude propidium iodide, indicating that cell death has not yet occurred.  相似文献   

5.
Abstract: Exposure of cultured cerebellar granule cells to 100 µ M glutamate plus glycine in the absence of Mg2+ causes calcium loading of the in situ mitochondria and is excitotoxic, as demonstrated by a collapse of the cellular ATP/ADP ratio, cytoplasmic Ca2+ deregulation (the failure of the cell to maintain a stable cytoplasmic free Ca2+ concentration), and extensive cell death. Glutamate-evoked Ca2+ deregulation is exacerbated by the mitochondrial respiratory chain inhibitor rotenone. Cells maintained by glycolytic ATP, i.e., in the presence of the mitochondrial ATP synthase inhibitor oligomycin, remain viable for several hours but are still susceptible to glutamate; thus, disruption of mitochondrial ATP synthesis is not a necessary step in glutamate excitotoxicity. In contrast, the combination of rotenone (or antimycin A) plus oligomycin, which collapses the mitochondrial membrane potential, therefore preventing mitochondrial Ca2+ transport, allows glutamate-exposed cells to maintain a high ATP/ADP ratio while accumulating little 45Ca2+ and maintaining a low bulk cytoplasmic free Ca2+ concentration determined by fura-2. It is concluded that mitochondrial Ca2+ accumulation is a necessary intermediate in glutamate excitotoxicity, whereas the decreased Ca2+ flux into cells with depolarized mitochondria may reflect a feedback inhibition of the NMDA receptor mediated by localized Ca2+ accumulation in a microdomain accessible to the mitochondria.  相似文献   

6.
The effect of γ-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 μM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 ± 117 nM) in addition to the high-affinity receptors (KD 7 ± 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 ± 3 (μM) only when the cells had been cultured in the presence of 50 νM GABA, 50 μM muscimol, or 150 μM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 μM bicuculline and mimicked by 50 μM muscimol or 150 μM THIP whereas 150 μM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors.  相似文献   

7.
Abstract: Excitatory amino acid (EAA)-induced polyphosphoinositide (PPI) hydrolysis was studied during the development in culture of cerebellar granule cells. The developmental pattern was similar using metabotropic glutamate (Glu) receptor (mGluR) agonists, including L-Glu, quisqualate, and trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid: The stimulation of [3H]inositol monophosphate ([3H]-InsP) formation was low at 2 days in vitro (DIV), but the response increased steeply, reaching a peak at 4 DIV, followed by a progressive decline. In contrast, carbamylcholine-induced PPI hydrolysis exhibited a plateau after a pronounced increase during the first week in vitro. At 6 DIV, but not at 4 DIV, when the activity peaked, PPI hydrolysis elicited by Glu was reduced by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801, indicating that in cultured granule cells, NMDA receptors contribute to [3H]-InsP formation and that this component of the response develops relatively late. Accordingly, NMDA-induced [3H]-InsP formation, estimated under Mg2+-free conditions, increased markedly from very low values at 2 DIV to a plateau at 8–10 DIV. The developmental pattern of EAA-induced PPI hydrolysis was paralleled by changes in the level of an mRNA for a specific mGluR subtype ( mGluR1 mRNA). RNA blot analysis performed with the pmGR1 cDNA probe revealed that the hybridization signal in RNA extracts from cultures at 1 DIV was very weak, but mGluR mRNA levels increased dramatically between 1 and 3 DIV, followed by a progressive decrease, so that by 15 DIV the mRNA levels were only ∼10% of the values at 3 DIV. These observations indicate that the functional expression of the mGluR is subject to developmental regulation, which critically involves receptor mRNA levels.  相似文献   

8.
Abstract: Platelet-activating factor (PAF) is a potent lipid mediator implicated in various pathological conditions, including CNS neuronal injury. However, the production of PAF by mammalian CNS neurons has not as yet been demonstrated. In the present study, we demonstrate that PAF is produced by cultured rat cerebellar granule cells. PAF was identified on the basis of chemical and enzymatic characteristics, biological activities with washed rabbit platelets, and behavior on TLC and HPLC. PAF was detected both in the cells and in the incubation medium, a result indicating the release of PAF from cultured neurons. The amount of PAF produced during a 30-min incubation was as follows: 1.02 ± 0.10 and 0.93 ± 0.09 pmol/ 4 × 107 cells in incubation buffer and cells, respectively (n = 10). The calcium ionophore A23187 (2.5 μ M ) had only a mild stimulatory effect on PAF production, a finding indicating that the neuron-generated PAF might be synthesized mainly by the de novo pathway of PAF production.  相似文献   

9.
By use of nuclear mini-extracts prepared from cultured cerebellar granule cells in a gel-mobility assay, exogenous N-methyl-D-aspartate (NMDA) or kainate was shown to increase both 12-O-tetradecanoylphorbol 13-acetate-responsive element (TRE)- and cyclic AMP-responsive element (CRE)-binding activity. These increases were specifically prevented by the NMDA receptor antagonist D,L-2-amino-5-phosphonovalerate and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, respectively. The increase of TRE-binding activity was dependent on de novo protein synthesis, and its inductions by both NMDA and kainate required extracellular Ca2+. TRE-binding activity was competitively inhibited by the CRE, and vice versa, showing higher DNA-binding affinity to the CRE than to the TRE. A proteolytic clipping bandshift assay demonstrated that the increase in CRE-binding activity could be mediated by the TRE-binding activity. Thus, the TRE-binding activity cross-binding to the CRE could be activated by NMDA or kainate stimulation. The involvement of c-Fos or Fos-related proteins in the TRE- and CRE-binding complexes was shown by a supershift gel-mobility assay using anti-c-Fos antiserum.  相似文献   

10.
S1P is involved in the regulation of multiple biological processes (cell survival, growth, migration and differentiation) both in neurons and glial cells. The study was aimed at investigating the possible effects of S1P on calcium signaling in cerebellar astrocytes and differentiated granule cells. In cerebellar astrocytes S1P is able to mediate calcium signaling mainly through Gi protein coupled receptors, whereas in differentiated neurons it failed to evoke any calcium signaling, despite acting both extracellularly and intracellularly. The data indicate strict cell specificity in S1P-evoked calcium response, which could be relevant to communication between neurons and glial cells in the cerebellum.  相似文献   

11.
Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µ M glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.  相似文献   

12.
In primary cultures of cerebellar granule cells, [3H]nitrendipine binds with high affinity to a single site (KD 1 nM and Bmax 20 fmol/mg protein). The 1,4-dihydropyridine (DHP) class of compounds such as nitrendipine, nifedipine, and BAY K 8644 displace [3H]nitrendipine binding at nanomolar concentrations. Verapamil partially inhibits whereas diltiazem slightly increases the [3H]nitrendipine binding. In these cells, the calcium influx that is induced by depolarization is very rapid and is blocked by micromolar concentrations of inorganic calcium blockers such as cadmium, cobalt, and manganese. The calcium influx resulting from cell depolarization is potentiated by BAY K 8644 and partially inhibited (approximately 40%) by nitrendipine and nifedipine. Other non-DHP voltage-sensitive calcium channel (VSCC) antagonists, such as verapamil and diltiazem, completely blocked the depolarization-induced calcium influx. This suggested that nitrendipine and nifedipine block only a certain population of VSCCs. In contrast, verapamil and diltiazem do not appear to be selective and block all of VSCCs. Perhaps some VSCCs can be allosterically modulated by the binding site for the DHPs, whereas verapamil and diltiazem may block completely the function of all VSCCs by occupying a site that differs from the DHP binding site.  相似文献   

13.
Treatment with 200 mM ethanol for 6 days increased binding of the Ca2+ channel antagonist, (+)-[3H]PN 200-110, to intact PC12 cells in culture. Enhancement of binding by ethanol was due to an increase in binding site number without appreciable change in binding affinity. Long-term exposure to Ca2+ channel antagonist drugs (nifedipine, verapamil, or diltiazem), which, like ethanol, acutely inhibit Ca2+ flux, failed to alter (+)-[3H]PN 200-110 binding to PC12 membranes. Cotreatment of ethanol-containing cultures with the Ca2+ channel agonist, Bay K 8644, did not attenuate the response to ethanol; instead, chronic exposure to Bay K 8644 alone increased (+)-[3H]PN 200-110 binding. These results suggest that chronic exposure to ethanol increases Ca2+ channel antagonist receptor density in living neural cells, but that acute inhibition of Ca2+ flux by ethanol is unlikely to trigger this response.  相似文献   

14.
Abstract: The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an “early” Na+/Cl?-dependent component observed within minutes of glutamate exposure, and a “delayed” Ca2+-dependent component (ED50~50 µM) that coincided with progressive degeneration of granule cells 4–24 h after a brief (5–15 min) exposure to 100 µM glutamate. Quantitative analysis of cell viability and morphological observations identify a “window” in which TMB-8 (at >100 µM) protects granule cells from the Ca2+-dependent, but not the Na+/Cl?-dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

15.
Abstract: The functional expression of the kainate subtype of glutamate receptor (GluR) has been investigated in cultured rat cerebellar granule cells using single cell intracellular calcium ([Ca2+]i) measurements. Both AMPA- and kainate-induced [Ca2+]i increases could be blocked completely by the AMPA receptor-selective antagonist LY300168 (50 µ M ). However, following treatment with concanavalin A, an inhibitor of kainate receptor desensitisation, 30% of cells showed a kainate-induced [Ca2+]i rise of >100 n M in the presence of LY300168. Responses to 30 µ M kainate in the presence of LY300168 were virtually abolished by the AMPA and GluR5 kainate receptor competitive antagonist LY293558 (100 µ M ). These results demonstrate the presence of functional kainate receptors on cultured cerebellar granule cells, and suggest that the GluR5 subtype of kainate receptor plays a significant role in kainate receptor-mediated [Ca2+]i increases.  相似文献   

16.
To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate-treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH-b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3-phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate-treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time-dependent, an index of the progressive damage of the cell.  相似文献   

17.
The regulation of the cytosolic free Ca2+ concentration ([Ca2+]i) was investigated by microfluorimetry in single cerebellar granule neurons exposed to various treatments (high K+, glutamate, or acetylcholine) and drugs. The responses to the treatments developed asynchronously during cell culture, with high K+ and glutamate reaching their maxima at 6 and 7 days in vitro and acetylcholine at 9 days in vitro. The biphasic [Ca2+]i transients induced by high K+ (an initial peak, followed by a plateau 30-40% of the peak, both sustained by dihydropyridine-sensitive voltage-gated Ca2+ channels) were dissipated by washing with fresh medium or, more rapidly, by addition of excess EGTA (t1/2 = 11 +/- 2 and 3 +/- 0.6 s, respectively). Compared to those induced by high K+, the [Ca2+]i transients induced by glutamate administered in Mg2(+)-free medium were much more variable. An initial peak, sustained by voltage-gated Ca2+ channels, was visible in only approximately 50% of the cells and disappeared when multiple glutamate pulses were administered. In the rest of the population, the transients were monophasic, with persistent plateaus sustained only in part (30-40%) by voltage-gated Ca2+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Dehydroevodiamine has been reported to have neuroprotective and antiamnesic effects. This study examined the effects of dehydroevodiamine on glutamate release and uptake in cultured cerebellar cells. Chronic dehydroevodiamine exposure decreased the viability of granule cells. The basal and N-methyl-D-aspartate (NMDA)-induced release of glutamate from granule cells were decreased (26 and 14%) by dehydroevodiamine. The NMDA-induced release of glutamate was concentration-dependently inhibited in the granule cells. The basal and NMDA-induced releases of glutamate in chronically dehydroevodiamine-preexposed granule cells were unaffected by dehydroevodiamine. Glutamate uptake in the glial cells incubated without and with cAMP was inhibited (31% and 8%, respectively) by dehydroevodiamine. In the chronically dehydroevodiamine-preexposed glial cells, glutamate uptake was increased (8%) in the cAMP-coexposed glial cells by dehydroevodiamine but was unaffected in the naive cells. In addition, dehydroevodiamine potentiated (from 20% to 34%) the inhibition of L-pyrollidine-2,4-dicarboxylic acid (PDC) on glutamate uptake in naive glial cells, but this inhibition was reduced (from 41% to 26%) in cAMP-coexposed glial cells. These results suggest that dehydroevodiamine inhibits glutamate uptake and release. Furthermore, the results suggest that the characteristics of glutamate release and uptake in granule and glial cells may be altered by chronic exposure to dehydroevodiamine.  相似文献   

19.
Peng L  Gu L  Hu X  Zhao L  Hertz L 《Neurochemical research》2008,33(2):328-335
We previously showed that cultured mouse cerebellar granule cells during incubation in glutamine-replete medium respond to 45 mM [K+]e after 20 and 60 min incubation with extracellular-signal regulated kinase 1 and 2 (ERK1/2) phosphorylation which is mainly, but probably not exclusively, secondary to glutamate release and transactivation of epidermal growth factor (EGF) receptors. In the present study the response after 20 min was shown to be abolished by protein kinase C (PKC) inhibition, whereas that at 60 min was PKC-independent. Addition of 50 μM glutamate to the cells caused ERK1/2 phosphorylation already after 5 min most of which was sensitive to PKC inhibition although a minor part was PKC inhibition-resistant. Exposure to [K+]e during incubation in glutamine-depleted medium caused no stimulated release of glutamate but a transactivation-independent ERK1/2 phosphorylation at 20 and 60 min. The response at 20 min was insensitive to PKC inhibition. The potential importance of these complex responses for synaptic plasticity is discussed. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

20.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号