首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accumulating evidence suggests that regulatory T cells play a crucial role in preventing autoimmunity. Recently, a naturally occurring CD4+CD25+ T-cell subset that is anergic and also suppressive has been shown to suppress autoimmunity in several animal models. We used proteoglycan-induced arthritis (PGIA) as a study model to investigate the role of the CD4+CD25+ regulatory T cells in autoimmune arthritis. There was no significant change in the percentage of CD4+CD25+ T cells during the immunization period when proteoglycan- or ovalbumin-immunized BALB/c and C57BL/6 mice were compared. An adoptive transfer study showed that the CD4+CD25+ T cells did not protect severe combined immunodeficient mice from arthritis when they were cotransferred with splenocytes from arthritic animals. Similarly, depletion of the CD4+CD25+ T cells did not enhance the onset of the disease or disease severity in severe combined immunodeficient mice. Moreover, CD28-deficient mice, which have very few CD4+CD25+ T cells, were highly resistant to PGIA. These findings indicate that the CD4+CD25+ regulatory T cells may not play a critical role in controlling PGIA.  相似文献   

2.
Clonal expansion of CD4+CD28- T cells is a characteristic finding in patients with rheumatoid arthritis (RA). Expanded CD4+ clonotypes are present in the peripheral blood, infiltrate into the joints, and persist for years. CD4+CD28- T cells are oligoclonal lymphocytes that are rare in healthy individuals but are found in high percentages in patients with chronic inflammatory diseases. The size of the peripheral blood CD4+CD28- T-cell compartment was determined in 42 patients with RA and 24 healthy subjects by two-color FACS analysis. The frequency of CD4+CD28- T cells was significantly higher in RA patients than in healthy subjects. Additionally, the number of these cells was significantly higher in patients with extra-articular manifestations and advanced joint destruction than in patients with limited joint manifestations. The results suggest that the frequency of CD4+CD28- T cells may be a marker correlating with extra-articular manifestations and joint involvement.  相似文献   

3.
Targeting interleukin-2 (IL-2) and/or agonist anti-CD40 antibody (Ab) into tumors represents an effective vaccination strategy that avoids systemic toxicity and resolves treated-site tumors. Here, we examined IL-2 and/or anti-CD40 Ab-driven local versus systemic T cell function and the installation of T cell memory. Single tumor studies showed that IL-2 induced a potent CD4+ and CD8+ T cell response that was limited to the draining lymph node and treated-site tumor, and lymph node tumor-specific CD8+ T cells did not upregulate CD44. A two-tumor model showed that while IL-2-treated-site tumors resolved, distal tumors continued to grow, implying limited systemic immunity. In contrast, anti-CD40 Ab treatment with or without IL-2 expanded the systemic T cell response to non-draining lymph nodes, and distal tumors resolved. Tumor-specific T cells in lymph nodes of anti-CD40 Ab ± IL-2-treated mice upregulated CD44, demonstrating activation and transition to effector/memory migratory cells. While CD40-activated CD4+ T cells were not required for eradicating treated-site tumors, they, plus CD8+ T cells, were crucial for removing distal tumors. Rechallenge/depletion experiments showed that the effector/memory phase required the presence of previously CD40/IL-2-activated CD4+ and CD8+ T cells to prevent recurrence. These novel findings show that different T cell effector mechanisms can operate for the eradication of local treated-site tumors versus untreated distal tumors and that signaling through CD40 generates a whole of body, effector/memory CD4+ and CD8+ T cell response that is amplified and prolonged via IL-2. Thus, successful immunotherapy needs to generate collaborating CD4+ and CD8+ T cells for a complete long-term protective cure.  相似文献   

4.
CD25+CD4+ regulatory T cells participate in the regulation of immune responses. We recently demonstrated the presence of CD25brightCD4+ regulatory T cells with a capacity to control T cell proliferation in the joints of patients with rheumatoid arthritis. Here, we investigate a possible accumulation of these regulatory T cells in the inflamed joint of different rheumatic diseases including rheumatoid arthritis. The studies are also extended to analyze whether cytokine production can be suppressed by the regulatory T cells. Synovial fluid and peripheral blood samples were obtained during relapse from 36 patients with spondyloarthropathies, 21 adults with juvenile idiopathic arthritis and 135 patients with rheumatoid arthritis, and the frequency of CD25brightCD4+ T cells was determined. Of 192 patients, 182 demonstrated a higher frequency of CD25brightCD4+ T cells in synovial fluid than in peripheral blood. In comparison with healthy subjects, the patients had significantly fewer CD25brightCD4+ T cells in peripheral blood. For functional studies, synovial fluid cells from eight patients were sorted by flow cytometry, and the suppressive capacity of the CD25brightCD4+ T cells was determined in in vitro cocultures. The CD25brightCD4+ T cells suppressed the production of both type 1 and 2 cytokines including interleukin-17, as well as proliferation, independently of diagnosis. Thus, irrespective of the inflammatory joint disease investigated, CD25brightCD4+ T cells were reduced in peripheral blood and enriched in the joint, suggesting an active recruitment of regulatory T cells to the affected joint. Their capacity to suppress both proliferation and cytokine secretion might contribute to a dampening of local inflammatory processes.  相似文献   

5.
Various abnormalities in CD4+CD25+ regulatory T cells (Tregs) in systemic lupus erythematosus (SLE) include increased Foxp3+ cells that are CD25 negative. Barring methodological technical factors, these cells could be atypical Tregs or activated non-Treg CD4+ cells that express Foxp3. Two groups have reached opposite conclusions that could possibly reflect the subjects studied. One group studied untreated new-onset SLE and suggested that these T cells were mostly CD25-Foxp3+ non-Tregs. The other group studied patients with long-standing disease and suggested that these cells are mostly dysfunctional Tregs. A third group reported increased Foxp3+CD4+CD25dim rather than CD25- cells in active SLE and these were also non-Tregs. Thus, it is likely that not all Foxp3+ T cells in SLE have protective suppressive activity.  相似文献   

6.
We have recently provided data suggesting a potential role for mitochondria and Bcl-2-family molecules in apoptosis sensitivity of HIV-specific CD8+ T cells. Here, we report on the role of filamentous (F) actin in this process. Disruption of actin by cytochalasin D (cytD) or lantrunculin A remarkably reduced CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells while their spontaneous apoptosis was unaffected. This inhibition cannot be attributed to changes of CD95/Fas distribution or levels in these cells. Furthermore, cytD treatment reduced CD95/Fas-induced apoptosis of CD8+ T cells from HIV+ patients independently of their differentiation status. CD95/Fas-induced apoptosis of both CD38+ and CD38 HIV-specific CD8+ T cells was inhibited by cytD treatment indicating that actin mediates this apoptotic process independently of the activation level of these cells. CytD was found to reduce the activation of caspase-8 induced by short treatment of purified CD8+ T cells from HIV+ patients with anti-CD95/Fas. Our data reveal actin as a critical mediator of HIV-specific CD8+ T cell apoptosis; further analysis of the molecular mechanisms governing this process may potentially contribute to design new therapies targeting the enhancement of the immune system in HIV infection.  相似文献   

7.
8.
Circulating CD3+CD4+CD28- cells exhibit reduced apoptosis and were found to be more enriched in patients with ankylosing spondylitis than in age-matched healthy control individuals (7.40 ± 6.6% versus 1.03 ± 1.0%; P < 0.001). Levels of CD4+CD28- T cells correlate with disease status as measured using a modified metrology score, but they are independent of age and duration of ankylosing spondylitis. CD4+CD28- T cells produce IFN-γ and perforin, and thus they must be considered proinflammatory and cytotoxic. These T cells share phenotypic and functional properties of natural killer cells, strongly expressing CD57 but lacking the lymphocyte marker CD7. MHC class I recognizing and activating natural killer cell receptors on the surface of CD4+CD28- T cells may be involved in a HLA-B27 mediated co-stimulation of these proinflammatory and cytotoxic cells.  相似文献   

9.
Resting naive CD4+CD45R0?CD45RA+ T cells are sensitive to ionomycin. In contrast, resting CD4+CD45RA?CD45R0+ memory T cells show resistance to this Ca2+ ionophore. In the present study, the ability of activated T lymphocytes to respond to ionomycin during the transition from naive precursors into memory T cells has been analyzed. Activated CD4+CD45RA+CD45R0+ T cells are always present both in human peripheral blood (HPB) and in the ionomycin-resistant (IR) fraction. Therefore, some activated T cells are resistant toward the Ca2+ ionophore. CD69 molecules are markers of the very early stage of T cell activation. However, CD4+CD69+ T cells have never been found in the IR fraction. Thus, the majority of CD4+ T lymphocytes at the early stage of activation are ionomycin-sensitive cells. The proportion of CD4+CD25+ T cells did not differ significantly in HPB and in the IR fraction. The presence of CD4+CD25+ T lymphocytes in the IR fraction reflects changes in the Ca2+-signaling pathway at this differentiation step of activated cells. Depending on the expression level of CD25 molecules, the population of CD4+CD25+ cells is divided in T-regulatory (CD25high) and proliferating (CD25low) subpopulations. The action of ionomycin results in a decrease in the portion of the CD4+CD25low T-cells, but it leads to an increase in the proportion of the CD4+CD25high T lymphocytes. Consequently, greater portion of CD4+CD25high T lymphocytes and smaller portion of CD4+CD25low T cells are IR cells. Expression of HLA-DR molecules can be used as the marker for the late activation step. The IR fraction is significantly rich in CD4+HLA-DR+ T lymphocytes in comparison to the blood of the same donor. The link between different differentiation steps of CD4+ T-lymphocytes and alterations in calcium ion homeostasis is discussed.  相似文献   

10.
Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on CD4+ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on CD4+ T cell subsets. Mouse or human CD4+ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of CD4+ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional CD4+ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory CD4+ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.  相似文献   

11.
CD3+CD4+CD28null and CD3+CD8+CD28null T cells are enriched in patients with immune-mediated diseases compared with healthy controls. This study shows that CD4+CD28null T cells express Toll-like receptors recognizing bacterial lipopolysaccharides in ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. In ankylosing spondylitis, TLR4 (23.1 ± 21.9%) and, to a smaller extent, TLR2 (4.1 ± 5.8%) were expressed on CD4+CD28null T cells, whereas expression was negligible on CD4+CD28+ and CD8+ T cells. CD4+CD28null T cells produced perforin upon stimulation with lipopolysaccharide, and this effect was enhanced by autologous serum or recombinant soluble CD14. Perforin production could be prevented with blocking antibodies directed against CD14 or TLR4. Incubation of peripheral blood mononuclear cells with tumour necrosis factor alpha led to an upregulation of TLR4 and TLR2 on CD4+CD28null T cells in vitro, and treatment of patients with antibodies specifically directed against tumour necrosis factor alpha resulted in decreased expression of TLR4 and TLR2 on CD4+CD28null T cells in vivo. We describe here a new pathway for direct activation of cytotoxic CD4+ T cells by components of infectious pathogens. This finding supports the hypothesis that CD4+CD28null T cells represent an immunological link between the innate immune system and the adaptive immune system.  相似文献   

12.
It is now generally accepted that CD4+CD25+ Treg cells play a major role in the prevention of autoimmunity and pathological immune responses. Their involvement in the pathogenesis of chronic arthritis is controversial, however, and so we examined their role in experimental antigen-induced arthritis in mice. Depletion of CD25-expressing cells in immunized animals before arthritis induction led to increased cellular and humoral immune responses to the inducing antigen (methylated bovine serum albumin; mBSA) and autoantigens, and to an exacerbation of arthritis, as indicated by clinical (knee joint swelling) and histological scores. Transfer of CD4+CD25+ cells into immunized mice at the time of induction of antigen-induced arthritis decreased the severity of disease but was not able to cure established arthritis. No significant changes in mBSA-specific immune responses were detected. In vivo migration studies showed a preferential accumulation of CD4+CD25+ cells in the inflamed joint as compared with CD4+CD25- cells. These data imply a significant role for CD4+CD25+ Treg cells in the control of chronic arthritis. However, transferred Treg cells appear to be unable to counteract established acute or chronic inflammation. This is of considerable importance for the timing of Treg cell transfer in potential therapeutic applications.  相似文献   

13.
Background The human 5T4 (h5T4) oncofoetal antigen is expressed by a wide variety of human carcinomas including colorectal, ovarian, gastric and renal, but rarely on normal tissues. Its restricted expression on tumour tissues as well as its association with tumour progression and bad prognosis has driven the development of a MVA-based vaccine (TroVax) which has been tested in several early phase clinical trials and these studies have led to the start of a phase III trial in renal cell carcinoma patients. We have recently shown that CD8+ T cells recognizing h5T4 can be generated in the absence of CD4+ T cells from peripheral blood lymphocytes of human healthy individuals. Results We report the existence and expansion of human CD4+ T cells against h5T4 by stimulation with autologous monocyte-derived dendritic cells infected with a replication defective adenovirus encoding the h5T4 cDNA (Ad-h5T4). The h5T4-specific T-cell responses in normal individuals are enhanced by initial depletion of CD25+ cells (putative T regulatory cells) prior to the in vitro stimulation. We have identified a novel h5T4-derived 15-mer peptide recognized by CD4+ T cells in HLA-DR4 positive healthy individuals. Interestingly, CD4+ T cells spontaneously recognizing a different 5T4 epitope restricted by HLA-DR were identified in tumour-infiltrating lymphocytes isolated from a regressing renal cell carcinoma lung metastasis. Conclusion Our data show that CD4+ T cells recognizing h5T4 can be expanded and detected in healthy individuals and a renal cell carcinoma patient. Such h5T4-specific CD4+ T cells boosted or induced by vaccination could act to modulate both cell or antibody mediated anti-tumour responses. This work was supported by Cancer Research UK.  相似文献   

14.
15.
Targeted molecular therapies inhibit proliferation and survival of cancer cells but may also affect immune cells. We have evaluated the effects of Sirolimus and Sorafenib on proliferation and survival of lymphoid cell subsets. Both drugs were cytotoxic to CD4+CD25high T cells, and were growth inhibitory for CD4+ and CD8+ T cells. Cytotoxicity depended on CD3/CD28 stimulation and was detectable within 12 h, with 80–90% of CD4+CD25high cells killed by 72 h. Cell death was due to apoptosis, based on Annexin V and 7AAD staining. Addition of IL-2 prevented the apoptotic response to Sirolimus, potentially accounting for reports that Sirolimus can enhance proliferation of CD4+CD25high cells. These results predict that Sirolimus or Sorafenib would reduce CD4+CD25high cells if administered prior to antigenic stimulation in an immunotherapy protocol. However, administration of IL-2 protects CD4+CD25high T cells from cytotoxic effects of Sirolimus, a response that may be considered in design of therapeutic protocols.  相似文献   

16.
Flow cytometry has been used to analyze the changes in the number of CD4+ cells that expressed surface markers of activation (CD25, CD71, HLA-DR, and CD95) in cultures of TCR-stimulated CD3+CD45RO+ Т-lymphocytes after in vivo exposure to different concentrations of methylprednisolone (MP). T-cells were obtained from healthy donors and rheumatoid arthritis (RA) patients. Suppressive action of МР on the expression of activation and proliferation markers (CD25 and CD71, respectively) by CD4+ T-cells was observed in all study subjects. МР increased the number of CD4+ HLA-DR+/CD95+ cells among the СD3+CD45RO+ cells obtained from RA patients and subjected to TCR activation, whereas the number of such cells in the control group decreased after MP treatment. The MP-induced changes in the cells subjected to TCR activation can be indicative of relative resistance of the CD4+CD45RO+HLA-DR+/CD95+ cell population in RA patients to the action of glucocorticoids and the possible role of this subpopulation in RA pathogenesis.  相似文献   

17.
Iodine is an essential trace element for thyroid hormone synthesis and metabolism, either low or high intake may lead to thyroid disease, but the pathogenetic mechanisms by which iodine interacts with the thyroid autoimmune are poorly understood. We investigated the dynamic changes of CD4+CD25+ regulatory T cells in NOD.H-2h4 mice with iodine-induced autoimmune thyroiditis (AIT), and explore potential immune mechanism of AIT induced by iodine. NOD.H-2h4 mice were randomly divided into two groups, and received plain water or water containing 0.005% sodium iodide. Eight weeks after iodine provision, the incidences of thyroiditis, relative weights of thyroids, and serum thyroglobulin antibody titers in the iodine-supplied groups were significantly increased compared to the control groups (p < 0.05). The AIT mice had fewer CD4+CD25+Foxp3+ T cells and reduced Foxp3 mRNA expression in splenocytes compared with the controls (p < 0.01), and maintained relatively low levels during the development of thyroiditis. The changes described above aggravated gradually with the extension of iodine treatment. These data suggest that CD4+CD25+ regulatory T cells may be involved in the pathogenesis and development of AIT induced by iodine.  相似文献   

18.
Adoptive transfer of CD4+CD25+ regulatory T cells has been shown to have therapeutic effects in animal models of autoimmune diseases. Chemokines play an important role in the development of autoimmune diseases in animal models and humans. The present study was performed to investigate whether the progression of organ-specific autoimmune diseases could be reduced more markedly by accumulating chemokine receptor-expressing CD4+CD25+ regulatory T cells efficiently in target organs in MRL/MpJ-lpr/lpr (MRL/lpr) mice. CD4+CD25+Foxp3+ T cells (Treg cells) and CD4+CD25+Foxp3+ CCR2-transfected T cells (CCR2-Treg cells) were transferred via retro-orbital injection into 12-week-old MRL/lpr mice at the early stage of pneumonitis and sialadenitis, and the pathological changes were evaluated. Expression of monocyte chemoattractant protein-1 (MCP-1)/CCL2 was observed in the lung and submandibular gland of the mice and increased age-dependently. The level of CCR2 expression and MCP-1 chemotactic activity of CCR2-Treg cells were much higher than those of Treg cells. MRL/lpr mice to which CCR2-Treg cells had been transferred showed significantly reduced progression of pneumonitis and sialadenitis in comparison with MRL/lpr mice that had received Treg cells. This was due to more pronounced migration of CCR2-Treg cells and their localization for a longer time in MCP-1-expressing lung and submandibular gland, resulting in stronger suppressive activity. We prepared chemokine receptor-expressing Treg cells and demonstrated their ability to ameliorate disease progression by accumulating in target organs. This method may provide a new therapeutic approach for organ-specific autoimmune diseases in which the target antigens remain undefined.  相似文献   

19.
B-lymphoma cells express a highly tumor-specific antigen, monoclonal Ig, which is a promising target for immunotherapy. Previous work has demonstrated that B-lymphoma cells spontaneously process their endogenous monoclonal Ig and present variable (V) region peptides (Id-peptides) on their MHC class II molecules to CD4+ T cells. Id-specific CD4+ T cells protect mice against B-lymphoma cells in the absence of anti-idiotypic antibodies. The molecular mechanism by which Id-specific CD4+ T cells kill B-lymphoma cells is hitherto unknown. We here demonstrate in an Id-specific T-cell receptor (TCR)–transgenic mouse model that Id-specific CD4+ T cells induce apoptosis of Fas+ B-lymphoma cells in vitro by FasLigand (FasL)–Fas interaction. Moreover, the rare B lymphomas that had escaped rejection in TCR-transgenic mice had down-regulated their sensitivity to Fas-mediated apoptosis. Although these results suggest that FasL-Fas interaction is important, Id-specific CD4+ T cells could eliminate Id+ B-lymphoma cells in vivo by other mechanisms, since three independent ways of blocking FasL-Fas–mediated killing failed to abrogate tumor protection in TCR-transgenic mice. These results suggest that there are several redundant pathways by which Id-specific CD4+ T cells eliminate Id+ B-lymphoma cells in vivo, of which FasL-Fas interaction is only one.Supported by grants from the Norwegian Cancer Society, the Research Council of Norway, and the Multiple Myeloma Research Foundation.  相似文献   

20.
We have previously reported that ATPγS, a slowly hydrolyzed analog of ATP, inhibits the activation of human CD4+ T lymphocytes by anti-CD3 and anti-CD28 mAb. In this report we have partially characterized the signaling mechanisms involved in this immunosuppressive effect. ATPγS had no inhibitory effect on CD4+ T-cell activation induced by PMA and anti-CD28, indicating that it acts proximally to the TCR. It had no effect on the calcium rise induced by CD3/CD28 stimulation, but inhibited the phosphorylation of three kinases, ERK2, p38 MAPK and PKB, that play a key role in the activation of T cells. The receptor involved in these actions remains unidentified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号