首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
ABSTRACT: BACKGROUND: The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR) is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. RESULTS: The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25) remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1a, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4) were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-[increment][increment]CT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-[increment][increment]CT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13) as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such experiments. CONCLUSIONS: We recommend the use of RDN5.8, UBC13, and PGK1 alone or the combination of RDN5.8 plus UBC13 or PGK1 as reference genes for RT-qPCR analysis of gene expression in C. glabrata following azole treatment. In contrast, we show that ACT1 and other commonly used reference genes (GAPDH, PPIA, RPL13A, TUB1, etc.) were not validated as good internal controls in the current model.  相似文献   

3.
4.
5.
Gene expression studies using postmortem human brain tissue are a common tool for studying the etiology of psychiatric disorders. Quantitative real-time PCR (qPCR) is an accurate and sensitive technique used for gene expression analysis in which the expression level is quantified by normalization to one or more reference genes. Therefore, accurate data normalization is critical for validating results obtained by qPCR. This study aimed to identify genes that may serve as reference in postmortem dorsolateral-prefrontal cortices (Brodmann’s area 46) of schizophrenics, bipolar disorder (BPD) patients, and control subjects. In the exploratory stage of the analysis, samples of four BPD patients, two schizophrenics, and two controls were quantified using the TaqMan Low Density Array endogenous control panel, containing assays for 16 commonly used reference genes. In the next stage, six of these genes (TFRC, RPLP0, ACTB, POLR2a, B2M, and GAPDH) were quantified by qPCR in 12 samples of each clinical group. Expressional stability of the genes was determined by GeNorm and NormFinder. TFRC and RPLP0 were the most stably expressed genes, whereas the commonly used 18S, POLR2a, and GAPDH were the least stable. This report stresses the importance of examining expressional stability of candidate reference genes in the specific sample collection to be analyzed.  相似文献   

6.
Quantitative real-time polymerase chain reaction (qPCR) is one of the most accurate and widely used methods for gene expression analysis. However, the choice of reference genes for normalization is critical for accurate quantifica- tion of gene expression. As development of genomics, mining large-scale datasets such as microarray and RNAsequencing data becomes a new approach for exploitation of new reference genes. In this study, we analyzed an RNAsequencing dataset of rice anther and 167 microarray datasets involving different tissues and developing stages of rice anthers and pollens. We selected 12 candidate genes and other 5 reference genes, including ACT1, eEF-1α, GAPDH, Exp2, and CCDC72 used in previous studies, and evaluated their expression in eight tissues and different developmental stages of anthers in rice variety 9311 and Yuetai. UPF3, elF4A-3, GAPDH, and PPP6 were identified as the most suitable reference genes for qPCR analysis of anther development in rice. The new candidate reference genes showed more stable expression than the traditionally used reference genes. These results provide a set of reliable reference genes for studies in rice anther developmental process.  相似文献   

7.
8.
Gene expression studies are fundamental to understand the molecular basis of severe malformations in fish development, particularly under aquaculture conditions. Real-time PCR (qPCR) is the most accurate method of quantifying gene expression, provided that suitable endogenous controls are used to normalize the data. To date, no reference genes have been validated for developmental gene expression studies in Atlantic halibut (Hippoglossus hippoglossus). We have determined the expression profiles of 6 candidate reference genes (Actb, Eef2, Fau, Gapdh, Tubb2 and 18S rRNA) in 6 embryonic and 5 larval stages of Atlantic halibut development. There were significant changes in expression levels throughout development, which stress the importance and complexity of finding appropriate reference genes. The three software applications (BestKeeper, geNorm and NormFinder) used to evaluate the stability of potential reference genes produced comparable results. Tubb2 and Actb were the most stable genes across the different developmental stages, whereas 18S rRNA and Gapdh were the most variable genes and thus inappropriate to use as reference genes. According to geNorm and NormFinder, the best two-gene normalization factors corresponded to the geometric average of Tubb2/Actb and Tbb2/Fau, respectively. We believe that either of these normalization factors can be used for future developmental gene expression studies in Atlantic halibut.  相似文献   

9.
The process of selection and validation of reference genes is the first step in studies of gene expression by real-time quantitative polymerase chain reaction (RT-qPCR). The genome of lettuce, the most popular leaf vegetable cultivated worldwide, has recently been sequenced; therefore, suitable reference genes for reliable results in RT-qPCR analyses are required. In the present study, 17 candidate reference genes were selected, and their expression stability in lettuce leaves under drought, salt, heavy metal, and UV-C irradiation conditions and under the application of abscisic acid (ABA) was evaluated using geNorm and NormFinder software. The candidate reference genes included protein-coding traditional and novel reference genes and microRNAs (miRNAs). The results indicate that the expression stability is dependent on the experimental conditions. The novel protein-coding reference genes were more suitable than the traditional reference genes under drought, UV-C irradiation, and heavy metal conditions and under the application of ABA. Only under salinity conditions were the traditional protein-coding reference genes more stable than the novel genes. In addition, the miRNAs, mainly MIR169, MIR171/170 and MIR172, were stably expressed under the abiotic stresses evaluated, representing a suitable alternative approach for gene expression data normalization. The expression of phenylalanine ammonia lyase (PAL) and 4-hydroxyphenylpyruvate dioxygenase (HPPD) was used to further confirm the validated protein-coding reference genes, and the expression of MIR172 and MIR398 was used to confirm the validated miRNA genes, showing that the use of an inappropriate reference gene induces erroneous results. This work is the first survey of the stability of reference genes in lettuce and provides guidelines to obtain more accurate RT-qPCR results in lettuce studies.  相似文献   

10.

Background  

Reference genes, which are often referred to housekeeping genes, are frequently used to normalize mRNA levels between different samples. However the expression level of these genes may vary among tissues or cells, and may change under certain circumstances. Thus the selection of reference gene(s) is critical for gene expression studies. For this purpose, 10 commonly used housekeeping genes were investigated in isolated human neutrophils.  相似文献   

11.

Background  

RT-qPCR is a preferred method for rapid and reliable quantification of gene expression studies. Appropriate application of RT-qPCR in such studies requires the use of reference gene(s) as an internal control to normalize mRNA levels between different samples for an exact comparison of gene expression level. However, recent studies have shown that no single reference gene is universal for all experiments. Thus, the identification of high quality reference gene(s) is of paramount importance for the interpretation of data generated by RT-qPCR. Only a few studies on reference genes have been done in plants and none in peach (Prunus persica L. Batsch). Therefore, the present study was conducted to identify suitable reference gene(s) for normalization of gene expression in peach.  相似文献   

12.
13.
14.
15.
Reference genes in real-time PCR   总被引:2,自引:0,他引:2  
  相似文献   

16.
Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.  相似文献   

17.
Quantitative real-time polymerase chain reaction (qRT-PCR) has been extensively used in several plant species as an accurate technique for gene expression analysis. However, the expression level of a target gene may be misconstrued due to unstable expression of the reference genes under different experimental conditions. Therefore, it is necessary to systematically evaluate these reference genes before experiments are conducted. Recently, more and more studies have focused on gene expression in pepper (Capsicum annuum L.). In this study, ten putative reference genes were chosen to identify expression stability by using geNorm and NormFinder statistical algorithms in ten different pepper sample pools, including those from different plant tissues (root, stem, leaf and flower) and from plants treated with hormones (salicylic acid and gibberellic acid) and abiotic stresses (cold, heat, salt and drought). EF1?? and UEP exhibited the most stable expression across all of the tested pepper samples. For abiotic stress or different hormone treatment, the ranking of candidate reference genes was not completely consistent, except for EF1?? which showed a relatively stable expression level. For different tissues, the expression of Actin1 was stable and it was considered an appropriate reference gene. It is concluded that EF1??, UEP and Actin1 are suitable reference genes for reliable qRT-PCR data normalization for the tissues and experimental conditions used in this experiment.  相似文献   

18.
19.
qRT-PCR is becoming a routine tool in molecular biology to study gene expression. It is necessary to find stable reference genes when performing qRT-PCR. The expression of genes cloned in oil-tea camellia currently cannot be accurately analyzed due to a lack of suitable reference genes. We collected different tissues (including roots, stems, leaves, flowers and seeds) from six oil-tea camellia species to determine stable reference genes. Five novel and ten traditional reference gene sequences were selected from the RNA-seq database of Camellia oleifera Abel seeds and specific PCR Primers were designed for each. Cycle threshold (C t) data were obtained from each reaction for all samples. Three different software tools, geNorm, NormFinder and Best-Keeper were applied to calculate the expression stability of the candidate reference genes according to the C t values. The results were similar between the three software packages, and indicated that the traditional genes TUBα-3, ACT7α and the novel gene CESA were relatively stable in all species and tissues. However, no genes were sufficiently stable across all species and tissues, thus the optimal number of reference genes required for accurate normalization varied from 2 to 6. Finally, the relative expression of squalene synthase (SQS) and squalene epoxidase (SQE) genes related to important ingredients squalene and tea saponin in oil-tea camellia seeds were compared by using stable to less stable reference genes. The comparison results validated the selection of reference genes in the current study. In summary, for the different tissues of six oil-tea camellia species different optimal numbers of suitable reference genes were found.  相似文献   

20.
Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号