首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene pretreatment of intact Avena seedlings or of excisedcoleoptile sections results in an increased response of thecells to auxin. It is suggested that ethylene brings about theacceleration of hydrolytic reactions controlling the physicalproperties of cell walls and hence increases their capacityfor growth. Coleoptile elongation of intact seedlings is inhibitedby ethylene; this inhibition is concurrent with a lateral expansionof the entire coleoptile. It is suggested that under a givenset of conditions coleoptile cells are capable of attaininga finite volume and that the preferential lateral expansioninduced by ethylene is accomplished at the expense of longitudinalextension. Experiments with intact and deseeded plants indicatethat lateral expansion depends on the supply of some factorfrom the endosperm.  相似文献   

2.
Although elongation growth is reduced by ethylene, swelling responses do not occur. Ethylene reduces neither transport nor metabolism of applied IAA in either mesocotyl or coleoptile. We propose that maintenance of high auxin levels within these tissues sustains polar transport and contributes to the relative insensitivity of maize to applied ethylene.  相似文献   

3.
Ethylene and the growth of rice seedlings   总被引:8,自引:2,他引:6       下载免费PDF全文
Etiolated whole rice seedlings enclosed in sealed vials produced ethylene at a rate of 0.9 picomole per hour per seedling. When 2-centimeter-long shoots were subdivided into 5-millimeter-long sections, the sections containing the tip of the shoot evolved 37% of the total ethylene with the remaining 63% being produced along a gradient decreasing to the base of the shoot. The tip of the coleoptile also had the highest level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and of the ethylene-forming enzyme activity. Ethylene is one of the factors controlling coleoptile elongation. Decapitation of the seedling reduced ethylene evolution to one-third its original level and inhibited coleoptile growth. In short-term experiments, the growth rate of decapitated seedlings was restored to almost that of intact seedlings by application of ethylene at a concentration of 10 microliters per liter. Apart from ethylene, O2 also participates in the control of coleoptile growth. When rice seedlings were grown in a gas mixture of N2 and O2, the length of the coleoptiles reached a maximum at a concentration of 2.5% O2. Lower and higher concentrations of O2 reduced coleoptile growth. The effect of exogenous ethylene on coleoptile growth was also O2 dependent.  相似文献   

4.
J. G. Roddick 《Planta》1971,102(2):134-139
Summary The steroidal alkaloid tomatine did not enhance elongation of oat coleoptile and first internode sections, or of wheat coleoptile sections. Higher concentrations of the alkaloid inhibited elongation and interacted antagonistically with IAA. Although 10-4 M tomatine alone did not influence elongation of oat coleoptile sections, it did reduce growth response to exogenous IAA. Tomatine concentrations less than 10-4 M did not influence response to IAA. The auxin activity of tomatine, reported by Vendrig, was therefore not confirmed.  相似文献   

5.
Action of Inhibitors of RNA and Protein Synthesis on Cell Enlargement   总被引:10,自引:6,他引:4       下载免费PDF全文
Further studies with inhibitors of protein synthesis are presented to support the conclusion, drawn from work with chloramphenicol, that protein synthesis is a critical limiting factor in auxin-induced cell expansion. The indoleacetic acid-induced elongation of oat coleoptile sections was strongly inhibited by dl-p-fluorophenylalanine, and the inhibition is antagonized by phenylalanine. Puromycin at 10(-4)m very strongly inhibited the indoleacetic acid-induced growth of oat coleoptile and artichoke tuber sections and exerted a less powerful effect on pea stem sections. As found earlier with chloramphenicol, concentrations of puromycin effective in inhibiting the growth of coleoptile sections had quantitatively similar effects on protein synthesis, as measured by the incorporation of C(14)-leucine into protein of the coleoptile tissue. Several analogues of RNA bases were also tested, but while 8-azaguanine very strongly inhibited growth of artichoke tuber disks, 6-azauracil was the only one of this group clearly inhibitory to growth in coleoptile or pea stem sections. Actinomycin D actively inhibited both elongation and the incorporation of C(14)-leucine into protein in oat coleoptile sections. Inhibition of the 2 processes went closely parallel. Actinomycin D also powerfully inhibited growth of artichoke tuber disks. All the compounds effective in inhibiting growth generally inhibited the uptake of leucine as well.The possibility that auxin causes cell enlargement in plants by inducing the synthesis of a messenger RNA and of one or more new but unstable enzymes, is discussed. Possible but less favored alternative explanations are: A) that auxin induces synthesis of a wall protein, or B) that the continued synthesis of some other unstable protein (by a process independent of auxin) may be a prerequisite for cell enlargement.  相似文献   

6.
Four growth-influencing compounds—hydroxyproline, 2,2′-dipyridyl, 2-chloroethylphosphonic acid, and indoleacetic acid—were used to examine the relationship between lignin formation and growth of wheat coleoptile sections. Hydroxyproline and 2-chloroethylphosphonic acid, at low concentrations, inhibited growth and increased lignin content. Dipyridyl, which promoted coleoptile elongation, decreased lignin content. Indoleacetic acid caused a 300% increase in growth at 0.1 mm but resulted in lignin content no different from controls with no auxin. Chemical and anatomical evidence is given which indicates that lignin is present in the epidermal cell walls of the wheat coleoptile. It is thus possible that bonding between lignin and hemicellulose may have some influence on coleoptile growth.  相似文献   

7.
Elongation of coleoptile segments, having or not having a tip,excised from rice (Oryza sativa L. cv. Sasanishiki) seedlingswas promoted by exogenous ethylene above 0.3 µl l–1as well as by IAA above 0.1 µM. Ethylene production ofdecapitated segments was stimulated by IAA above 1.0µM,and this was strongly inhibited by 1.0 µM AVG. AVG inhibitedthe IAA-stimulated elongation of the decapitated segment witha 4 h lag period, and this was completely recovered by ethyleneapplied at the concentration of 0.03 µl l–1, whichhad no effect on elongation without exogenous IAA. The effectsof IAA and ethylene on elongation were additive. These factsshow that ethylene produced in response to IAA promotes ricecoleoptile elongation in concert with IAA, probably by prolongingthe possible duration of the IAA-stimulated elongation, butthat they act independently of each other. Moreover, AVG stronglyinhibited the endogenous growth of coleoptile segments withtips and this effect was nullified by the exogenous applicationof 0.03 µl l–1 ethylene. These data imply that theelongation of intact rice coleoptiles may be regulated cooperativelyby endogenous ethylene and auxin in the same manner as foundin the IAA-stimulated elongation of the decapitated coleoptilesegments. Key words: oryza sativa, Ethylene, Auxin, Coleoptile growth  相似文献   

8.
Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion.  相似文献   

9.
Ethylene evolution from etiolated barley (Hordeum vulgare), wheat (Triticum aestivum), and rye (Secale cereale) seedlings during coleoptile growth followed a rhythmic pattern, with a period of about 16 h for barley and wheat and 12 h for rye seedlings. Leaf emergence disturbed the established rhythm of ethylene evolution.  相似文献   

10.
Summary The effects of fusaric acid (5-n-butylpicolinic acid), picolinic acid (2-pyridine carboxylic acid), and picloram (4-amino-3, 5, 6-trichloropicolinic acid) on endogenous ethylene production by tomato cuttings and elongation growth of oat coleoptile sections were measured. Ethylene production by tomato cuttings was substantially stimulated by treatment with 1×10−3 and 1×10−5 M picoloram and to a lesser extent by 1×10−3 M fusaric acid; picolinic acid had little effect. The ethylene levels produced in response to fusaric acid are not high enough to account for the ethylene injury observed in Fusarium wilt. Fusaric acid inhibited oat coleoptile extension, picolinic acid had little effect, and picloram promoted growth.  相似文献   

11.
玉米胚芽鞘细胞伸长生长进程中,富含羟脯氨酸蛋白质的合成速率同细胞的伸长生长呈负相关,迅速伸长期较低,而伸长近终止阶段出现活性高峰。生长素促进的伸长生长与富含羟脯氨酸蛋白质的合成、累积相关。IAA使胚芽鞘高体切段细胞的伸长生长增加4倍多,细胞中较低的羟脯氨酸蛋白质的合成速率似有利于生长素的促进效应。生长素对伸长细胞中羟脯氨酸蛋白质的转运和在壁中累积有抑制作用。  相似文献   

12.
The effects of cyclic adenosine 3':5'-monophosphate (cAMP) on the growth of Avena coleoptile segments over 4 to 10 hours were monitored with a position sensing transducer. At pH 6, cAMP (0.1 mm with and without 2.5 mm glucose; or 2 mm alone) or dibutyryl cAMP (0.1 mm) was added at the beginning of the experiment, or after about 1 hour or after about 6 or 7 hours. Under all conditions tested, cAMP compounds had little or no effect on coleoptile segment elongation. Inasmuch as cAMP does not duplicate the rapid and vigorous elongation obtained with 2 mum auxin, the hypothesis that cAMP is a mediator of auxin activity is not supported by experimental evidence in this system. This conclusion is dependent upon the assumption that the cAMP compounds penetrated the tissue.  相似文献   

13.
The effects of applied ethylene on the growth of coleoptilesand mesocotyls of etiolated monocot seedlings (oat and maize)have been compared with those on the epicotyl of a dicot seedling(the etiolated pea). Significant inhibition of elongation by ethylene (10 µll–1for 24 h) was found in intact seedlings of all three species,but lateral expansion growth was observed only in the pea internodeand oat mesocotyl tissue. The sensitivity of the growth of seedlingparts to ethylene is in the decreasing order pea internode,oat coleoptile and oat mesocotyl, with maize exhibiting theleast growth response. Although excised segments of mesocotyland coleoptile or pea internode all exhibit enhanced elongationgrowth in IAA solutions (10–6–2 ? 10–5 moll–1), no consistent effects were found in ethylene. Ethyleneproduction in segments was significantly enhanced by applicationof auxin (IAA, 10–5 mol l–6 or less) in all tissuesexcept those of the eat mesocotyl. Segments of maize show a slow rate of metabolism of applied[2-14C]IAA (30 per cent converted to other metabolites within9 h) and a high capacity for polar auxin transport. Ethylene(10 µl l–1 for 24 h) has little effect on eitherof these processes. The oat has a smaller capacity for polartransport than maize and the rate ef metabolism of auxin isas fast as in the pea (90 per cent metabolized in 6 h). Althoughethylene pretreatment does not change the rate of auxin metabolismin oat, there is a marked reduction in auxin transport. It is proposed that the insensitivity of maize seedlings toethylene is related to the supply and persistence of auxin whichcould protect the seedling against the effects of applied orendogenously produced ethylene. Although the mesocotyl of oatis sensitive to applied ethylene it may be in part protectedagainst ethylene in vivo by the absence of an auxin-enhancedethylene production system. The results are discussed in relationto a model for the auxin and ethylene control of cell growthin the pea.  相似文献   

14.
The effect of ethylene on cell wall metabolism in sections excised from etiolated pea stems was studied. Ethylene causes an inhibition of elongation and a pronounced radial expansion of pea internodes as shown by an increase in the fresh weight of excised, 1-cm sections. Cell wall metabolism was studied using centrifugation to remove the cell wall solution from sections. The principal neutral sugars in the cell wall solution extracted with H2O are arabinose, xylose, galactose, and glucose. Both xylose and glucose decline relative to controls in air within 1 hour of exposure to ethylene. Arabinose and galactose levels are not altered by ethylene until 8 hours of treatment, whereupon they decline in controls in air relative to ethylene treatment. When alcohol-insoluble polymers are fractionated into neutral and acidic polysaccharides, xylose and glucose predominate in the neutral fraction and arabinose and galactose in the acidic fraction. Ethylene depresses the levels of xylose and glucose in the neutral fraction and elevates arabinose and galactose in the acidic fraction. Ethylene treatment does not affect the level of uronic acids extracted with H2O; however, the level of hydroxyproline-rich proteins in this water-extracted cell wall solution is increased by ethylene. Extraction of sections with CaCl2 results in an increase in the levels of neutral sugars particularly arabinose. Ethylene depresses the yield of arabinose in calcium-extracted solution relative to controls in air. Similarly, extraction with CaCl2 increases the yield of extracted hydroxyproline in ethanol-insoluble polymers and ethylene depresses its level relative to controls. Metabolism of uronic acids and neutral sugars and growth in response to ethylene treatment contrast markedly with auxin-induced polysaccharide metabolism and growth. With auxin, sections increase mostly in length not radius, and this growth form is associated with an increase in the levels of xylose, glucose, and uronic acids. With ethylene, on the other hand, stem elongation is suppressed and expansion is promoted, and this growth pattern is associated with a decrease in xylose and glucose in the ethanol-insoluble polysaccharides.  相似文献   

15.
The role of auxin in the recovery of plant tissue from oxidant treatment was investigated. Treatment of oat coleoptile sections with concentrations of indoleacetic acid (IAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) optimal for normal growth, following pretreatment with moderately inhibiting levels of peroxyacetyl nitrate (PAN) immediately accelerated recovery of growth rate. In some cases inhibition was also less at supraoptimal values of auxin. Treatment of ozonepretreated tissue with IAA or 2,4-D enhanced inhibition at high levels of auxin and produced an optimal growth concentration level which was lower than for sections not given ozone pretreatment. Auxin treatment also reduced the degree of inhibition in fluoride and iodoacetamide-pretreated sections. Mechanisms by which auxin-induced recovery from inhibition may occur are discussed.  相似文献   

16.
The inner bark of Pinus silvestris L. contains a natural acidic growth promoter which stimulates elongation of wheat coleoptile sections and oat mesocotyl sections, produces oat coleoptile curvature, and is not effective in an oat first-leaf increment test. It occupies the same or a closely related RF to that of authentic IAA if rechromatographed with seven partition solvents. Pine auxin described by Fransson could not be detected by spraying with reagents known for developing the color reaction of IAA. Natural pine resin from wounds, when added to test solutions, affects several characteristic features of authentic IAA which are commonly used for its identification. These are: (a) position on chromatograms (RF), especially if 70% ethanol is used as the partition solvent, (b) amount of growth promotion in bioassays, and (c) ability to develop specific color reactions with IAA on chromatograms with known reagents. Interaction with pine resin or other related substances which could not be separated from the extract by conventional partition methods may be responsible in previous studies for the difficulties in identifying the auxin of Pinus silvestris as an indole-3-acetic acid.  相似文献   

17.
R. E. Holm  F. B. Abeles 《Planta》1968,78(3):293-304
Summary Ethylene and 2.4-dichlorophenoxyacetic acid (2.4-D) inhibited the growth of etiolated soybean (Glycine max cv. Hawkeye) seedlings causing tissue swelling and an increase in RNA, DNA and protein content in the subapical hypocotyl tissue. 2.4-D increased ethylene evolution from soybean seedlings and it was found that some of the effect of this herbicide on soybeans was due to the increased ethylene production.Ethylene is responsible in part for the inhibition of elongation and of increase in weight that occurs at supraoptimal concentrations of 2.4-D applied to excised hypocotyl sections. Abscisic acid inhibits 2.4-D-induced tissue swelling and ethylene production in the excised, elongating section. The cotyledons of the soybean seedlings appear to regulate the 2.4-D-induced production of ethylene and the roots are necessary for the 2.4-D-induced tissue swelling.  相似文献   

18.
Isatin, (indole 2,3-dione), which promotes elongation of Pisum stem sections at concentrations exceeding 0.1 mm, promotes elongation of Avena coleoptile sections only at higher concentrations, exceeding 1 mm. Aged isatin solutions are more active than fresh solutions, due to the slow, spontaneous conversion to isatate (o-aminophenylglyoxylate). A concentration of 0.1 mm aged isatin is as active in Avena coleoptile sections as in peas. Isatate has been independently synthesized and its auxin activity in both Avena coleoptile and Pisum stem sections confirmed. The synthetic isatate is more effective than isatin in both systems. This suggests that the auxin activity of isatin is due to its conversion to isatate.  相似文献   

19.
20.
The modern concept of the hormonal regulation of fruit set, growth, maturation, and ripening is considered. Pollination and fertilization induce ovule activation by surmounting the blocking action of ethylene and ABA to be manifested in auxin accumulation. Active fruit growth by pericarp cell division and elongation is due to the syntheses of auxin in the developing seed and of gibberellins in the pericarp. In climacteric fleshy fruits, the maturation is controlled by ethylene via so-called System 1 combining the possibilities of autoinhibition and autocatalysis by ethylene of its own biosynthesis. Transition of tomato fruits from maturation to ripening is characterized by highly active synthesis of ethylene and its receptors due to the functioning of regulatory System 2 resulting in the up-regulation of much greater number of ethylene-inducible genes. In peach fruits, the hormonal regulation of ripening includes also an active auxin involvement in the ethylene biosynthesis, which is combined with the ethylene-induced expression of genes encoding both auxin biosynthesis and the response to auxin. Ethylene induces the expression of genes responsible for the fruit softening, its taste, color, and flavor. Nonclimacteric fleshy fruits produce very small amounts of ethylene; its evolution increases only by the very end of ripening and can be described by a reduced System 1. The ripening of nonclimacteric fruits only weakly depends on ethylene but is stimulated by abscisic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号