首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weterings E  van Gent DC 《DNA Repair》2004,3(11):1425-1435
Repair of DNA double-strand breaks (DSBs) by non-homologous end-joining (NHEJ) is required for resistance to genotoxic agents, such as ionizing radiation, but also for proper development of the vertebrate immune system. Much progress has been made in identifying the factors that are involved in this repair pathway. We are now entering the phase in which we begin to understand basic concepts of the reaction mechanism and regulation of non-homologous end-joining. This review concentrates on novel insights into damage recognition and subsequent tethering, processing and joining of DNA ends.  相似文献   

2.
Huntington’s disease (HD) is a neurodegenerative syndrome caused by mutations of the IT15 gene encoding for the huntingtin protein. Some research groups have previously shown that HD is associated with cellular radiosensitivity in quiescent cells. However, there is still no mechanistic model explaining such specific clinical feature. Here, we examined the ATM-dependent signaling and repair pathways of the DNA double-strand breaks (DSB), the key damage induced by ionizing radiation, in human HD skin fibroblasts. Early after irradiation, quiescent HD fibroblasts showed an abnormally low rate of recognized DSB managed by non-homologous end-joining reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones and by 53BP1 protein. Furthermore, HD cells elicited a significant but moderate yield of unrepaired DSB 24 h after irradiation. Irradiated HD cells also presented a delayed nucleo-shuttling of phosphorylated forms of the ATM kinase, potentially due to a specific binding of ATM to mutated huntingtin in the cytoplasm. Our results suggest that HD belongs to the group of syndromes associated with a low but significant defect of DSB signaling and repair defect associated with radiosensitivity. A combination of biphosphonates and statins complements these impairments by facilitating the nucleo-shuttling of ATM, increasing the yield of recognized and repaired DSB.  相似文献   

3.
4.
V(D)J recombination of immunoglobulin loci is dependent on the immune cell-specific Rag1 and Rag2 proteins as well as a number of ubiquitously expressed cellular DNA repair proteins that catalyze non-homologous end-joining of DNA double-strand breaks. The evolutionarily conserved Rad50/Mre11/Nibrin protein complex has a role in DNA double-strand break-repair, suggesting that these proteins, too, may participate in V(D)J recombination. Recent findings demonstrating that Rad50 function is defective in cells from patients afflicted with Fanconi anemia provide a possible mechanistic explanation for previous findings that lymphoblasts derived from these patients exhibit subtle defects in V(D)J recombination of extrachromosomal plasmid molecules. Here, we describe a series of findings that provide convincing evidence for a role of the Rad50 protein complex in V(D)J recombination. We found that the fidelity of V(D)J signal joint recombination in fibroblasts from patients afflicted with Fanconi anemia was reduced by nearly tenfold, compared to that observed in fibroblasts from normal donors. Second, we observed that antibody-mediated inhibition of the Rad50, Mre11, or Nibrin proteins reduced the fidelity of signal joint recombination significantly in wild-type cells. The latter finding was somewhat unexpected, because signal joint rejoining in cells from patients with Nijmegen breakage syndrome, which results from mutations in the Nibrin gene, occurs with normal fidelity. However, introduction of anti-Nibrin antibodies into these cells reduced the fidelity of signal joint recombination dramatically. These data reveal for the first time a role for the Rad50 complex in V(D)J recombination, and demonstrate that the protein product of the disease-causing allele responsible for Nijmegen breakage syndrome encodes a protein with residual DNA double-strand break repair activity.  相似文献   

5.
Prenatal exposure to low-dose radiation increases the risk of microcephaly and/or mental retardation. Microcephaly is also associated with genetic mutations that affect the non-homologous end-joining pathway of DNA double-strand break repair. To examine the link between these two causal factors, we characterized the neural developmental effects of acute radiation exposure in mouse littermate embryos harboring mutations in the Ku70 and p53 genes. Both low-dose radiation exposure and Ku70 deficiency induced morphologically indistinguishable cortical neuronal apoptosis. Irradiated Ku70-deficient embryos displayed anatomical damage indicative of increased radiosensitivity in the developing cerebral cortex. Deleting the p53 gene not only rescued cortical neuronal apoptosis at all levels but also restored the in vitro growth of Ku70-deficient embryonic fibroblasts despite the presence of unrepaired DNA/chromosomal breaks. The results confirm the role of DNA double-strand breaks as a common causative agent of apoptosis in the developing cerebral cortex. Furthermore, the findings suggest a disease mechanism by which the presence of endogenous DNA double-strand breaks in the newly generated cortical neurons becomes radiomimetic when DNA end joining is defective. This in turn activates p53-dependent neuronal apoptosis and leads to microcephaly and mental retardation.  相似文献   

6.
Elizabeth M. Kass 《FEBS letters》2010,584(17):3703-42482
DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.  相似文献   

7.
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.  相似文献   

8.
The endless tale of non-homologous end-joining   总被引:1,自引:0,他引:1  
Weterings E  Chen DJ 《Cell research》2008,18(1):114-124
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.  相似文献   

9.
10.
The extraordinary radiation resistance of Deinococcus radiodurans results from the efficient capacity of the bacterium to repair DNA double-strand breaks. By analysing the DNA damage repair-deficient mutant, KH311, a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance was identified. Investigations in vitro showed that the gene product of pprA (PprA) preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalysed by ATP-dependent and NAD-dependent DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining repair mechanism in which PprA plays a critical role.  相似文献   

11.
In mammalian cells, DNA double-strand breaks are repaired by non-homologous end-joining and homologous recombination, both pathways being essential for the maintenance of genome integrity. We determined the effect of mutations in Ku86 and DNA-PK on the efficiency and the accuracy of double-strand break repair by non-homologous end-joining and homologous recombination in mammalian cells. We used an assay, based on the transient transfection of a linearized plasmid DNA, designed to simultaneously detect transfection and recombination markers. In agreement with previous results non-homologous end-joining was largely compromised in Ku86 deficient cells, and returned to normal in the Ku86-complemented isogenic cell line. In addition, analysis of DNA plasmids recovered from Ku86 mutant cells showed an increased use of microhomologies at the nonhomologous end joining junctions, and displayed a significantly higher frequency of DNA insertions compared to control cells. On the other hand, the DNA-PKcs deficient cell lines showed efficient double-strand break repair by both mechanisms.  相似文献   

12.
S H Teo  S P Jackson 《The EMBO journal》1997,16(15):4788-4795
DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I-IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification and characterization of a novel gene, LIG4, which encodes a protein with strong homology to mammalian DNA ligase IV. Unlike CDC9, LIG4 is not essential for DNA replication, RAD52-dependent homologous recombination nor the repair of UV light-induced DNA damage. Instead, it encodes a crucial component of the non-homologous end-joining (NHEJ) apparatus, which repairs DNA double-strand breaks that are generated by ionizing radiation or restriction enzyme digestion: a function which cannot be complemented by CDC9. Lig4p acts in the same DNA repair pathway as the DNA end-binding protein Ku. However, unlike Ku, it does not function in telomere length homeostasis. These findings indicate diversification of function between different eukaryotic DNA ligases. Furthermore, they provide insights into mechanisms of DNA repair and suggest that the NHEJ pathway is highly conserved throughout the eukaryotic kingdom.  相似文献   

13.
High levels of interstrand cross-link damage in mammalian cells cause chromatid breaks and radial formations recognizable by cytogenetic examination. The mechanism of radial formation observed following DNA damage has yet to be determined. Due to recent findings linking homologous recombination and non-homologous end-joining to the action of the Fanconi anemia pathway, we speculated that radials might be the result of defects in either of the pathways of DNA repair. To test this hypothesis, we have investigated the role of homologous recombination proteins RAD51 and RAD52, non-homologous end-joining proteins Ku70 and LIG4, and protein MRE11 in radial formation and cell survival following interstrand crosslink damage with mitomycin C. For the studies we used small inhibitory RNA to deplete the proteins from cells, allowing for evaluation of radial formation and cell survival. In transformed normal human fibroblasts, depletion of these proteins increased interstrand crosslink sensitivity as manifested by decreased cell survival and increased radial formation. These results demonstrate that inactivation of proteins from either of the two separate DNA repair pathways increases cellular sensitivity to interstrand crosslinks, indicating each pathway plays a role in the normal response to interstrand crosslink damage. We can also conclude that homologous recombination or non-homologous end-joining are not required for radial formation, since radials occur with depletion of these pathways.  相似文献   

14.
Fanconi anemia (FA) is a genetic disorder associated with genomic instability and cancer predisposition. Cultured cells from FA patients display a high level of spontaneous chromosome breaks and an increased frequency of intragenic deletions, suggesting that FA cells may have deficiencies in properly processing DNA double strand breaks. In this study, an in vitro plasmid DNA end joining assay was used to characterize the end joining capabilities of nuclear extracts from diploid FA fibroblasts from complementation groups A, C, and D. The Fanconi anemia extracts had 3-9-fold less DNA end joining activity and rejoined substrates with significantly less fidelity than normal extracts. Wild-type end joining activity could be reconstituted by mixing FA-D extracts with FA-A or FA-C extracts, while mixing FA-A and FA-C extracts had no effect on end joining activity. Protein expression levels of the DNA-dependent protein kinase (DNA-PK)/Ku-dependent nonhomologous DNA end-joining proteins Xrcc4, DNA ligase IV, Ku70, and Ku86 in FA and normal extracts were indistinguishable, as were DNA-dependent protein kinase and DNA end binding activities. The end joining activity as measured by the assay was not sensitive to the DNA-PK inhibitor wortmannin or dependent on the nonhomologous DNA end-joining factor Xrcc4. However, when DNA/protein ratios were lowered, the end joining activity became wortmannin-sensitive and no difference in end joining activity was observed between normal and FA extracts. Taken together, these results suggest that the FA fibroblast extracts have a deficiency in a DNA end joining process that is distinct from the DNA-PK/Ku-dependent nonhomologous DNA end joining pathway.  相似文献   

15.
Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement of DNA polymerase lambda in non-homologous end joining and base excision repair. In this study, we investigated whether DNA polymerase lambda played a significant role in determining ionizing radiation sensitivity. Despite increased sensitivity to hydrogen peroxide, lambda-deficient mouse embryonic fibroblasts displayed equal survival after exposure to ionizing radiation compared to their wild-type counterparts. In addition, we found increased sensitivity to the topoisomerase inhibitors camptothecin and etoposide in the absence of polymerase lambda. These results do not reveal a major role for DNA polymerase lambda in determining radiosensitivity in vivo.  相似文献   

16.
Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.  相似文献   

17.
Characteristic of damage introduced in DNA by ionizing radiation is the induction of a wide range of lesions. Single-strand breaks (SSBs) and base damages outnumber double-strand breaks (DSBs). If unrepaired, these lesions can lead to DSBs and increased mutagenesis. XRCC1 and DNA polymerase beta (polbeta) are thought to be critical elements in the repair of these SSBs and base damages. XRCC1-deficient cells display a radiosensitive phenotype, while proliferating polbeta-deficient cells are not more radiosensitive. We have recently shown that cells deficient in polbeta display increased radiosensitivity when confluent. In addition, cells expressing a dominant negative to polbeta have been found to be radiosensitized. Here we show that repair of radiation-induced lesions is inhibited in extracts with altered polbeta or XRCC1 status, as measured by an in vitro repair assay employing irradiated plasmid DNA. Extracts from XRCC1-deficient cells showed a dramatically reduced capacity to repair ionizing radiation-induced DNA damage. Extracts deficient in polbeta or containing a dominant negative to polbeta also showed reduced repair of radiation-induced SSBs. Irradiated repaired plasmid DNA showed increased incorporation of radioactive nucleotides, indicating use of an alternative long-patch repair pathway. These data show a deficiency in repair of ionizing radiation damage in extracts from cells deficient or altered in polbeta activity, implying that increased radiosensitivity resulted from radiation damage repair deficiencies.  相似文献   

18.
19.
20.
Nijmegen breakage syndrome, caused by mutations in the NBS1 gene, is an autosomal recessive chromosomal instability disorder characterized by cancer predisposition. Cells isolated from Nijmegen breakage syndrome patients display increased levels of spontaneous chromosome aberrations and sensitivity to ionizing radiation. Here, we have investigated DNA double strand break repair pathways of homologous recombination, including single strand annealing, and non-homologous end-joining in Nijmegen breakage syndrome patient cells. We used recently developed GFP-YFP-based plasmid substrates to measure the efficiency of DNA double strand break repair. Both single strand annealing and non-homologous end-joining processes were markedly impaired in NBS1-deficient cells, and repair proficiency was restored upon re-introduction of full length NBS1 cDNA. Despite the observed defects in the repair efficiency, no apparent differences in homologous recombination or non-homologous end-joining effector proteins RAD51, KU70, KU86, or DNA-PK(CS) were observed. Furthermore, comparative analysis of junction sequences of plasmids recovered from NBS1-deficient and NBS1-complemented cells revealed increased dependence on microhomology-mediated end-joining DNA repair process in NBS1-complemented cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号