首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host defense in cutaneous leishmaniasis, due to Leishmania tropica, is largely--if not exclusively--cell mediated. We observed in vitro that draining lymph node lymphocytes from L. tropica-infected C57BL/6 mice activate L. tropica-infected macrophages to kill the intracellular parasites (leishmanicidal effect). Because direct cell contact between lymphocytes and infected macrophages is required to achieve a maximum leishmanicidal effect, this effect cannot be attributed solely to lymphokines. Furthermore, because effector lymphocytes induced no detectable damage to infected macrophages, the effect also differs from conventional lymphocyte-mediated cytotoxicity. The present study identifies the phenotype of the effector lymphocyte and assesses the genetic restriction of the lymphocyte-macrophage interaction. Nylon wool column-enriched T lymphocytes from infected mice activate macrophages for antileishmanial effects; treatment of lymphocytes with anti-Thy-1.2 antibody plus complement abolishes this capacity. Furthermore, treatment with anti-Lyt-1 antibody plus complement (but not with anti-Lyt-2 plus complement) likewise abolishes the effector capacity of the lymphocytes. Parallel studies reveal that the percentage of Lyt-1+2- cells present in draining lymph nodes increases during the course of infection and reaches a peak with the onset of spontaneous resolution of the infection. Syngeneic, but not allogeneic, combinations of lymphocytes and infected macrophages result in macrophage activation. Furthermore, treatment of cells with appropriate anti-Ia monoclonal antibody abrogates the antileishmanial effects. These results indicate that Lyt-1+2- lymphocytes obtained from mice with spontaneously healing L. tropica infections can exert antileishmanial effects in vitro. This effect is genetically restricted--most likely to the I region of the MHC--and requires direct cell contact. The temporal relationship between the appearance of these effector lymphocytes in mice and the onset of disease resolution argues that they may also exert these antileishmanial effects in vivo.  相似文献   

2.
Antileishmanial defense has been ascribed to the antimicrobial effects induced by soluble macrophage-activating lymphokines (MAFs), such as interferon-gamma and granulocyte-macrophage colony-stimulating factor. Recently, we identified an additional mechanism of T cell-mediated macrophage activation of defense against Leishmania that is apparently lymphokine independent, requires cell-cell contact, and is not cytotoxic to host cells. By employing antigen-specific murine T cell hybridoma lines, we observed that this property was associated with CD4+ subpopulations possessing the characteristics of the Th1 subset. In the present study, we address the question of whether contact-mediated macrophage activation can also be induced by Th2 lymphocytes. We employed as T effector cells in antileishmanial defense assays the Th2 cell line D10.G1.4 (D10) which is specific for conalbumin. We observed that D10 cells were able to induce activation of Leishmania-infected macrophages only when the macrophages were also primed with conalbumin, and that this activation apparently occurred by a mechanism without the secretion of MAF. Moreover, when mice infected with L. major were injected into footpad lesions with conalbumin and D10 cells, in situ parasite replication was partially inhibited. The expression of this antimicrobial mechanism by Th1 as well as Th2 clones suggests that the property of contact-mediated (lymphokine-independent) activation may be shared by certain lymphocytes in both Th1 and Th2 subpopulations. We hypothesize that this activation mechanism may involve the interaction of a lymphocyte membrane-associated MAF (such as tumor necrosis factor) and its receptor on the infected macrophage, resulting in the induction of antimicrobial effects but not cytotoxicity to the host cell.  相似文献   

3.
Activation of macrophages by lymphokines (including interferon-gamma; IFN-gamma) is presently considered to be a major host defense mechanism against a number of intracellular microorganisms. In a series of earlier studies that made use of mice undergoing spontaneous resolution of footpad infections with Leishmania major, we obtained evidence suggesting that a subpopulation of Leishmania-sensitized lymph node T lymphocytes could activate antimicrobial effects in Leishmania-infected macrophages by an apparently lymphokine-independent mechanism. These effector lymphocytes are not cytotoxic to host cells, and their effects are antigen specific and genetically restricted. To more rigorously investigate this apparently novel mechanism of macrophage activation, we examined the effect of blocking lymphokine production with cyclosporin A (CSA) on the capacity of these effector lymphocytes to exert macrophage activating function. Although CSA blocked lymphokines that activate antileishmanial effects, it did not inhibit the antimicrobial capacity of the effector lymphocytes. We also confirmed that IFN-gamma is the major macrophage-activating lymphokine that induces antileishmanial effects; treatment of lymphokine-containing supernatants with anti-IFN-gamma antibody markedly reduced their antimicrobial effects. In contrast, treatment of effector lymphocytes with this antibody failed to reduce their macrophage-activating capacity. We conclude that there exists an apparently novel macrophage-activating mechanism for antimicrobial defense that is independent of soluble lymphokine mediators.  相似文献   

4.
Macrophages infected with amastigotes of Leishmania major and treated with IFN-gamma in vitro develop potent antimicrobial activities that eliminate the intracellular parasite. This antileishmanial activity was suppressed in a dose dependent fashion by NG-monomethyl-L-arginine (NGMMLA), a competitive inhibitor of nitrite, nitrate, nitric oxide and L-citrulline synthesis from L-arginine. Excess L-arginine added to infected macrophage cultures reversed the inhibitory effects of NGMMLA. Addition of arginase to culture media inhibited intracellular killing by IFN-gamma-treated cells. Similar effects were seen with macrophages obtained from BCG-infected C3H/HeN mice. Increased levels of nitrite, an oxidative product of the L-arginine-dependent effector mechanism, was measured in cultures of infected IFN gamma-treated macrophages as well as infected BCG-activated macrophages. Nitrite production correlated with development of antileishmanial activity. Nitrite production and microbicidal activity both decreased when in vivo or in vitro-activated macrophages were cultured in the presence of either arginase or NGMMLA. Nitric oxide synthesized from a terminal guanidino nitrogen atom of L-arginine and a precursor of the nitrite measured, may disrupt Fe-dependent enzymatic pathways vital to the survival of amastigotes within macrophages.  相似文献   

5.
Kolodziej H  Kiderlen AF 《Phytochemistry》2005,66(17):2056-2071
The antileishmanial and immunomodulatory potencies of a total of 67 tannins and structurally related compounds were evaluated in terms of extra- and intra-cellular leishmanicidal effects and macrophage activation for release of nitric oxide (NO), tumour necrosis factor (TNF) and interferon (IFN)-like activities. Their effects on macrophage functions were further assessed by expression analysis (iNOS, IFN-alpha, IFN-gamma, TNF-alpha, IL-1, IL-10, IL-12, IL-18). With few exceptions, e.g., caffeic acid derivatives, these polyphenols revealed little direct toxicity for extracellular promastigote Leishmania donovani or L. major strains. In contrast, many polyphenols appreciably reduced the survival of the intracellular, amastigote parasite form in vitro. Upon activation, e.g., by immune response mediators such as IFN-gamma, macrophages may transform from permissive host to leishmanicidal effector cells. Our data from functional bioassays suggested that the effects of polyphenols on intracellular Leishmania parasites were due to macrophage activation rather than direct antiparasitic activity. Gene expression analyses not only confirmed functional data, they also clearly showed differences in the response of infected macrophages when compared to that of noninfected cells. Conspicuously, infected macrophages showed augmented and prolonged activation of host defense mechanisms, indicating that parasitised macrophages were exquisitely predisposed or "primed" to react to activating molecules such as polyphenols. This promotive effect may be of special benefit, e.g., stimulation of the non-specific immune system selectively at the site of infection and when needed. Although these data provide the basis for an immunological concept of plant polyphenols for their beneficial effects in various infectious conditions, in vivo experiments are essential to prove the therapeutic benefits of polyphenolic immunomodulators.  相似文献   

6.
To determine the role of IL-10 in cutaneous leishmaniasis, we examined lesion development following Leishmania major infection of genetically susceptible BALB/c mice lacking IL-10. Whereas normal BALB/c mice developed progressive nonhealing lesions with numerous parasites within them, IL-10(-/-) BALB/c mice controlled disease progression, and had relatively small lesions with 1000-fold fewer parasites within them by the fifth week of infection. We also examined a mechanism whereby Leishmania induced the production of IL-10 from macrophages. We show that surface IgG on Leishmania amastigotes allows them to ligate Fc gamma receptors on inflammatory macrophages to preferentially induce the production of high amounts of IL-10. The IL-10 produced by infected macrophages prevented macrophage activation and diminished their production of IL-12 and TNF-alpha. In vitro survival assays confirmed the importance of IL-10 in preventing parasite killing by activated macrophages. Pretreatment of monolayers with either rIL-10 or supernatants from amastigote-infected macrophages resulted in a dramatic enhancement in parasite intracellular survival. These studies indicate that amastigotes of Leishmania use an unusual and unexpected virulence factor, host IgG. This IgG allows amastigotes to exploit the antiinflammatory effects of Fc gamma R ligation to induce the production of IL-10, which renders macrophages refractory to the activating effects of IFN-gamma.  相似文献   

7.
Toxoplasma gondii is an intracellular parasite that survives and multiplies in professional phagocytes such as macrophages. Therefore, T. gondii has to cope with the panel of antimicrobial host immune mechanisms, among which IFN-gamma plays a crucial role. We report in this study that in vitro infection of murine macrophages with viable, but not with inactivated, parasites results in inhibition of IFN-gamma signaling within the infected cells. Thus, infection of RAW264.7 macrophages with tachyzoites inhibited IFN-gamma-induced STAT-1 tyrosine phosphorylation, mRNA expression of target genes, and secretion of NO. These effects were dependent on direct contact of the host cells with living parasites and were not due to secreted intermediates. In parallel, we report the induction of suppressor of cytokine signaling-1 (SOCS-1), which is a known feedback inhibitor of IFN-gamma receptor signaling. SOCS-1 was induced directly by viable parasites. SOCS overexpression in macrophages did not affect tachyzoite proliferation per se, yet abolished the inhibitory effects of IFN-gamma on parasite replication. The inhibitory effects of T. gondii on IFN-gamma were diminished in macrophages from SOCS-1-/- mice. The results suggest that induction of SOCS proteins within phagocytes due to infection with T. gondii contributes to the parasite's immune evasion strategies.  相似文献   

8.
Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.  相似文献   

9.
Macrophages from P/J mice demonstrated both quantitative and qualitative defects in lymphokine (LK)-induced activated macrophage antileishmanial effector reactions: a) these cells recognized the same LK signals that generated resistance to infection in responsive C3H/HeN macrophages, but more signal was required to observe maximal activity; b) LK-induced intracellular destruction of Leishmania tropica by P/J macrophages was minimal (less than 20%), and was induced by only one of three LK signals that regulate antimicrobial activities in C3H/HeN macrophages. The defective microbicidal activity of P/J macrophages observed with LK activation in vitro could also be demonstrated in vivo. Macrophages from P/J mice exposed to the macrophage-activating agent Mycobacterium bovis strain BCG in vivo were capable of restricting the intracellular replication of L. tropica but could not eliminate intracellular parasites, even with further incubation with LK during the 72-hr culture period. The defect of P/J macrophages for intracellular destruction of L. tropica, then, occurred in the activation sequence before the triggering stage that characterizes the macrophage defect of C3H/HeJ mice. Genetic regulation of the P/J macrophage defect appears to be by a single autosomal gene, with defective microbicidal activity as a recessive trait in these animals.  相似文献   

10.
Humans with immune-compromised conditions such as SCID are unable to control infection caused by normally nonpathogenic intracellular pathogens such as Mycobacterium bovis bacillus Calmette-Guérin. We found that SCID beige mice lacking both lymphocytes and NK cells had functionally normal lung macrophages and yet a selectively impaired response of type 1 cytokines IFN-gamma and IL-12, but not TNF-alpha, during M. bovis bacillus Calmette-Guérin infection. These mice succumbed to such infection. A repeated lung gene transfer strategy was designed to reconstitute IFN-gamma in the lung, which allowed investigation of whether adequate activation of innate macrophages could enhance host defense in the complete absence of lymphocytes. IFN-gamma transgene-based treatment was initiated 10 days after the establishment of mycobacterial infection and led to increased levels of both IFN-gamma and IL-12, but not TNF-alpha, in the lung. Lung macrophages were activated to express increased MHC molecules, type 1 cytokines and NO, and increased phagocytic and mycobactericidal activities. Activation of innate immunity markedly inhibited otherwise uncontrollable growth of mycobacteria and prolonged the survival of infected SCID hosts. Thus, our study proposes a cytokine transgene-based therapeutic modality to enhance host defense in immune-compromised hosts against intracellular bacterial infection, and suggests a central effector activity played by IFN-gamma-activated macrophages in antimycobacterial cell-mediated immunity.  相似文献   

11.
Leishmania are obligate intracellular parasites that invade and survive within host macrophages and can result in visceral leishmaniasis, a major public health problem worldwide. The entry of intracellular parasites, in general, involves interaction with the plasma membrane of host cells. Cholesterol in host cell membranes was recently shown to be necessary for binding and internalization of Leishmania and for the efficient presentation of leishmanial antigens in infected macrophages. This article describes the need to explore cyclodextrin-based compounds, which modulate host membrane cholesterol levels, as a possible therapeutic strategy against leishmaniasis in addition to other intracellular parasites.  相似文献   

12.
While reactive oxygen species (ROS) can kill Toxoplasma gondii in vitro the role these molecules play in vivo is not known. We used a flow cytometry-based assay to investigate the relationship between intracellular infection and ROS production during acute peritoneal toxoplasmosis in mice. A distinct population of ROS(+) inflammatory macrophages, detected by the oxidation of hydroethidine, was observed to increase progressively in frequency during the course of infection, and to be inversely correlated with the degree of cell parasitization. These data imply that either intracellular parasites inhibit ROS synthesis or, alternatively, ROS-producing cells contain anti-Toxoplasma activity. The latter interpretation was supported by the finding that uninfected ROS-producing inflammatory macrophages were resistant to infection in vivo. However, in the same animals, ROS-producing macrophages that had previously been parasitized could readily be infected with additional parasites, suggesting that the difference in ROS production between highly infected and less infected cells was not due to ROS-associated killing of parasites within these cells. In addition, macrophages infected with T. gondii in vitro and then briefly transferred to acutely infected mice upregulated ROS production in a manner that was again inversely correlated with the degree of intracellular parasitization. Taken together, these findings suggest that both ROS-associated anti-Toxoplasma activity and parasite-driven inhibition of ROS production underlie the observed pattern of ROS production. ROS function and parasite evasion of this function may contribute significantly to the balance between host defense and disease progression during acute infection.  相似文献   

13.
Secondary lysosomes of cultured mouse peritoneal macrophages were labeled with the electron-dense colloid saccharated iron oxide; the identity of the labeled structures was checked by the Gomori reaction for acid phosphatase. Amastigotes of Leishmania mexicana mexicana derived from mouse lesions were used to infect these macrophages in vitro. In electron micrographs of thin sections of infected macrophages the labeled secondary lysosomes were seen fused with the parasitophorous vacuoles without preventing subsequent multiplication of the parasites. A similar fusion probably occurs in vivo, and may provide a pathway through which not only nutrients but also drugs and host antibodies could reach the intracellular parasite.  相似文献   

14.
CBA mice develop cutaneous lesions when infected with Leishmania major. The disease development was significantly reduced by injecting into the lesion a combination of rIFN-gamma and rTNF-alpha. The doses of IFN-gamma and TNF-alpha used were suboptimal in that either cytokine alone did not have any effect. The therapeutic effect of IFN-gamma and TNF-alpha in vivo is reflected in their ability to activate macrophages to kill the intracellular parasites in vitro. The macrophage leishmanicidal activity induced by TNF-alpha and IFN-gamma can be completely inhibited by a specific inhibitor (L-NG monomethyl arginine) of nitric oxide synthesis. There was a direct correlation between the intracellular killing of the parasites and the production of nitric oxide by the macrophages. In contrast, there was no correlation between leishmanicidal activity and superoxide production by macrophages.  相似文献   

15.
A. Hoerauf    Ch. Rascher    R. Bang    A. Pahl    W. Solbach    K. Brune    M. Röllinghoff  & H. Bang 《Molecular microbiology》1997,24(2):421-429
The antiparasitic effects of cyclosporin A were examined in leishmanial infection by analysing the role of CsA-binding proteins (cyclophilins) in the host–parasite interaction. We hypothesized that the leishmanicidal effects of CsA on Leishmania major infected macrophages might be mediated through a cyclophilin of either the parasite or the host cell. Two cyclophilins (20 and 22 kDa) were purified from L. major parasites and N-terminally sequenced. Although enzyme activity of these cyclophilins was inhibited by CsA, pretreatment of L. major parasites with CsA did not result in reduction of a subsequent macrophage infection, arguing against a role of L. major cyclophilins as infectivity potentiators. However, host-cell cyclophilin A (CypA) was found to be critically involved in the intracellular replication of L. major parasites in murine macrophages. An antisense oligonucleotide to murine CypA was constructed and added to cultures of peritoneal macrophages prior to infection with L. major parasites. This treatment strongly reduced the expression of CypA in macrophages and resulted in the inhibition of the intracellular replication of L. major amastigotes. These data indicate that interaction of amastigotes with host-cell cyclophilin is an important part of the intracellular replication machinery of L. major and define, for the first time, a direct involvement of a cyclophilin in the survival strategies of an intracellular parasite.  相似文献   

16.
Human blood mononuclear cells stimulated in vitro with concanavalin A secrete a lymphokine which activates mouse macrophages to kill Leishmania enriettii. Supernatants of cells cultivated for 1 day and for 2 days were analyzed for this activity after G-100 gel filtration and isoelectrofocusing. First day antileishmanial activity was found in a MW range of 23,000 with an isoelectric point of 3.6 to 4.0. Second day antileishmanial activity eluted in a peak in the MW range of 23,000 to 65,000 with an isoelectric point of 4.0 to 4.3. This activity could be completely separated from migration-inhibitory factor (MIF) after isoelectrofocusing in first day and in second day supernatants. Antileishmanial activity could be separated from interferon-gamma in first day, but not in second day supernatants.  相似文献   

17.
Protozoan parasites of Leishmania spp. invade macrophages as promastigotes and differentiate into replicative amastigotes within parasitophorous vacuoles. Infection of inbred strains of mice with Leishmania major is a well-studied model of the mammalian immune response to Leishmania species, but the ultrastructure and biochemical properties of the parasitophorous vacuole occupied by this parasite have been best characterized for other species of Leishmania. We examined the parasitophorous vacuole occupied by L. major in lymph nodes of infected mice and in bone marrow-derived macrophages infected in vitro. At all time points after infection, single L. major amastigotes were wrapped tightly by host membrane, suggesting that amastigotes segregate into separate vacuoles during replication. This small, individual vacuole contrasts sharply with the large, communal vacuoles occupied by Leishmania amazonensis. An extensive survey of the literature revealed that the single vacuoles occupied by L. major are characteristic of those formed by Old World species of Leishmania, while New World species of Leishmania form large vacuoles occupied by many amastigotes.  相似文献   

18.
Cutaneous leishmaniasis can be either a spontaneously healing or chronic disease, depending upon the strain of parasite and the immunological status of the host. We have investigated parasite factors responsible for the variable pathogenesis observed in leishmanial infections by testing the sensitivity of several leishmanial strains to intracellular killing in lymphokine (LK) activated mouse macrophages. Significant microbicidal activity against Leishmania tropica, a strain which heals in C57BL/6 (B6) mice, was found. In contrast, a strain (Maria) which has previously been shown to induce chronic nonhealing cutaneous lesions in B6 mice was resistant to killing in activated macrophages. This resistance to killing was observed in macrophages activated by LK obtained from either Bacille Calmette-Guérin-, L. tropica, or the Maria strain infected mice. The inability of LK activated macrophages to kill the Maria strain was shown not to be due to parasite induced inhibition of killing mechanisms, since Maria strain infected, LK treated macrophages exhibited tumoricidial activity similar to uninfected macrophages. Furthermore, LK activated macrophages simultaneously infected with the Maria strain and another intracellular pathogen, Toxoplasma gondii, killed Toxoplasma, but not the Maria strain. Temperature was also found to significantly influence the multiplication and killing of Leishmania parasites. As would be expected from their cutaneous nature, L. tropica and Maria strain parasites multiplied better at 35 degrees C than at 37 degrees C. Also consistent with the failure of cutaneous strains to visceralize in immunocompetent mice was the observation that the killing of leishmanial parasites was enhanced at the higher temperature. Thus, the temperature dependent growth capacity and sensitivity to killing of a given leishmanial strain in macrophages may be important factors influencing the pathogenesis of cutaneous leishmaniasis.  相似文献   

19.
Recently, our group demonstrated that mouse lesions infected with Leishmania amazonensis are hypoxic. Evidence indicates the negative impact of hypoxia on the efficacy of a variety of chemotherapeutic agents against tumors, fungi, bacteria, and malaria parasites. In the present study, comparison of the effect of antileishmanial drugs on L. amazonensis-infected macrophages under normoxic and hypoxic conditions was performed. We compared the effect of 5% oxygen tension with a tension of 21% oxygen on peritoneal murine macrophage cultures infected with the parasite and treated with glucantime, amphotericin B, or miltefosine. Analysis of the infection index (percentage of infected macrophages x number of amastigotes per macrophage), dose-dependent efficacy of drugs, and IC(50) values demonstrated that hypoxia conferred a small, but significant, resistance to all 3 antileishmanial drugs. The present finding suggests that in vitro assays under hypoxia should not be neglected in drug studies.  相似文献   

20.
SYNOPSIS. Secondary lysosomes of cultured mouse peritoneal macrophages were labeled with the electron-dense colloid saccharated iron oxide; the identity of the labeled structures was checked by the Gomori reaction for acid phosphatase. Amastigotes of Leishmania mexicana mexicana derived from mouse lesions were used to infect these macrophages in vitro. In electron micrographs of thin sections of infected macrophages the labeled secondary lysosomes were seen fused with the parasitophorous vacuoles without preventing subsequent multiplication of the parasites. A similar fusion probably occurs in vivo , and may provide a pathway through which not only nutrients but also drugs and host antibodies could reach the intracellular parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号