首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) receptor has been attracting many neuroscientists' concerns, since it was reported to have a potential role in the neurogenesis, which occurs in the ventricular zone of the developing and adult brain. In the present experiments using baculovirus expression system, the LPA receptor encoded by ventricular zone gene 1 (Edg-2/Vzg-1) was found to be functionally coupled to Gi1, Goa, and G11, but not to GS. The coexpression of LPA receptor markedly decreased the expression of G protein alphai1 or alphaoa subunit, while the basal [35S]GTPgammaS binding significantly increased in the Gi1-preparation. The Scatchard Plot analysis indicates that the expression of LPA-receptor (Edg-2/Vzg-1) showed stimulation of Gi1 without agonist. These results suggest the Edg-2/Vzg-1 has an intrinsic acctivity on Gi1.  相似文献   

2.
3.
G-protein-coupled receptors signal through Rho to induce actin cytoskeletal rearrangement. We previously demonstrated that thrombin stimulates Rho-dependent process retraction and rounding of 1321N1 astrocytoma cells. Surprisingly, while lysophosphatidic acid (LPA) activated RhoA in 1321N1 cells, it failed to produce cell rounding. Thrombin, unlike LPA, decreased Rac1 activity, and activated (GTPase-deficient) Rac1 inhibited thrombin-stimulated cell rounding, while expression of dominant-negative Rac1 promoted LPA-induced rounding. LPA and thrombin receptors appear to differ in coupling to Gi, as LPA but not thrombin-stimulated 1321N1 cell proliferation was pertussis toxin-sensitive. Blocking Gi with pertussis toxin enabled LPA to induce cell rounding and to decrease activated Rac1. These data support the hypothesis that Rac1 and Gi activation antagonize cell rounding. Thrombin and LPA receptors also differentially activated Gq pathways as thrombin but not LPA increased InsP3 formation and reduced phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Microinjection of the plekstrin homology domain of phospholipase C (PLC)delta1, which binds PIP2, enabled LPA to elicit cell rounding, consistent with a requirement for PIP2 reduction. We suggest that Rho-mediated cytoskeletal responses are enhanced by concomitant reductions in cellular levels of PIP2 and Rac1 activation and thus effected only by G-protein-coupled receptors with appropriate subsets of G protein activation.  相似文献   

4.
During cerebral cortical neurogenesis, neuroblasts in the ventricular zone (VZ) undergo a shape change termed "interkinetic nuclear migration" whereby cells alternate between fusiform and rounded morphologies. We previously identified lp(A1), the first receptor gene for a signaling phospholipid called lysophosphatidic acid (LPA) and showed its enriched expression in the VZ. Here we report that LPA induces changes in neuroblast morphology from fusiform to round in primary culture, accompanied by nuclear movements, and formation of f-actin retraction fibers. These changes are mediated by the activation of the small GTPase, Rho. In explant cultures, where the cerebral cortical architecture remains intact, LPA not only induces cellular and nuclear rounding in the VZ, but also produces an accumulation of rounded nuclei at the ventricular surface. Consistent with a biological role for these responses, utilization of a sensitive and specific bioassay indicates that postmitotic neurons can produce extracellular LPA. These results implicate LPA as a novel factor in cortical neurogenesis and further implicate LPA as an extracellular signal from postmitotic neurons to proliferating neuroblasts.  相似文献   

5.
Since the molecular cloning of the vzg-1/Edg-2/LPA1 gene, studies have attempted to characterize LPA1 receptor functionality into a single categorical role, different from the other Edg-family LPA receptors. The desire to categorize LPA1 function has highlighted its complexity and demonstrated that the LPA1 receptor does not have one absolute function throughout every system. The central nervous system is highly enriched in the LPA1 receptor, suggesting an integral role in neuronal processes. Metastatic and invasive breast cancer also appears to have LPA-mediated LPA1 receptor functions that enhance phenotypes associated with tumorigenesis. LPA1 possesses a number of motifs conserved among G protein-coupled receptors (GPCRs): a DRY-like motif, a PDZ domain, Ser/Thr predicted sites of phosphorylation, a di-leucine motif, double cysteines in the tail and conserved residues that stabilize structure and determine ligand binding. The third intracellular loop of the LPA1 receptor may be the crux of receptor signaling and attenuation with phosphorylation of Thr-236 potentially a key determinant of basal LPA1 signaling. Mutagenesis data supports the notion that Thr-236 regulates this process since mutating Thr-236 to Ala-236 increased basal and LPA-mediated serum response factor (SRF) signaling activity and Lys-236 further increased this basal signaling. Here we describe progress on defining the major functions of the LPA1 receptor, discuss a context dependent dualistic role as both a negative regulator in cancer and a proto-oncogene, outline its structural components at the molecular amino acid level and present mutagenesis data on the third intracellular loop of the receptor.  相似文献   

6.
Tumor cell motility is the essential step in cancer metastasis. Previously, we showed that oxytocin and epidermal growth factor (EGF) effects on cell migration in prostate cancer cells require Giα2 protein. In the current study, we investigated the interactions among G-protein coupled receptor (GPCR), Giα2, PI3-kinase, and Rac1 activation in the induction of migratory and invasive behavior by diverse stimuli. Knockdown and knockout of endogenous Giα2 in PC3 cells resulted in attenuation of transforming growth factor β1 (TGFβ1), oxytocin, SDF-1α, and EGF effects on cell migration and invasion. In addition, knockdown of Giα2 in E006AA cells attenuated cell migration and overexpression of Giα2 in LNCaP cells caused significant increase in basal and EGF-stimulated cell migration. Pretreatment of PC3 cells with Pertussis toxin resulted in attenuation of TGFβ1- and oxytocin-induced migratory behavior and PI3-kinase activation without affecting EGF-induced PI3-kinase activation and cell migration. Basal- and EGF-induced activation of Rac1 in PC3 and DU145 cells were not affected in cells after Giα2 knockdown. On the other hand, Giα2 knockdown abolished the migratory capability of PC3 cells overexpressing constitutively active Rac1. The knockdown or knockout of Giα2 resulted in impaired formation of lamellipodia at the leading edge of the migrating cells. We conclude that Giα2 protein acts at two different levels which are both dependent and independent of GPCR signaling to induce cell migration and invasion in prostate cancer cells and its action is downstream of PI3-kinase–AKT–Rac1 axis.  相似文献   

7.
Lysophosphatidic acid (LPA), one of the naturally occurring phospholipids, stimulates cell motility through the activation of Rho family members, but the signaling mechanisms remain to be elucidated. In the present study, we investigated the roles of p21-activated kinase 1 (PAK1) on LPA-induced focal adhesion kinase (FAK) phosphorylation and cell motility. Treatment of human melanoma cells A2058 with LPA increased phosphorylation and activation of PAK1, which was blocked by treatment with pertussis toxin and by inhibition of phosphoinositide 3-kinase (PI3K) with an inhibitor LY294002 or by overexpression of catalytically inactive mutant of PI3Kgamma, indicating that LPA-induced PAK1 activation was mediated via a Gi protein and the PI3Kgamma signaling pathway. In addition, we demonstrated that Rac1/Cdc42 signals acted as upstream effector molecules of LPA-induced PAK activation. However, Rho-associated kinase, MAP kinase kinase 1/2 or phospholipase C might not be involved in LPA-induced PAK1 activation or cell motility stimulation. Furthermore, PAK1 was necessary for FAK phosphorylation by LPA, which might cause cell migration, as transfection of the kinase deficient mutant of PAK1 or PAK auto-inhibitory domain significantly abrogated LPA-induced FAK phosphorylation. Taken together, these findings strongly indicated that PAK1 activation was necessary for LPA-induced cell motility and FAK phosphorylation that might be mediated by sequential activation of Gi protein, PI3Kgamma and Rac1/Cdc42.  相似文献   

8.
Lysophosphatidic acid (LPA) is a major serum lysophospholipid that stimulates cell migration in diverse cell types including ovarian cancer cells. We report here that in the absence of Gi function, LPA induces inhibition, rather than stimulation, of cellular Rac activity, lamellipodium formation, and cell migration in response to insulin like growth factor I (IGF-I) in Chinese hamster ovary (CHO) cells, which solely express LPA1 as a LPA receptor. The inhibitory effects of LPA are abrogated by the expression of either Galpha13 C-terminal peptide or C3 toxin pretreatment, but not a Rho kinase inhibitor. Without PTX pretreatment, LPA stimulates Rac and cell migration yet similarly activates Rho, indicating that Rho activation by itself is not sufficient for inhibition of cell migration. Conversely, the expression of a dominant negative Rac mutant sufficiently mimics the LPA inhibition of cell migration. LPA inhibits IGF I-induced Akt activation by only 40% in a manner dependent on Rho kinase. These results demonstrate that inhibition of Gi function converts LPA regulation on Rac and cell migration to an inhibitory mode, which is mediated by G13 and Rho but not Rho kinase, and raise a possibility of Gi as a new therapeutic target for LPA-dependent tumor progression.  相似文献   

9.
Lysophosphatidic acid (LPA) is a small lysophospholipid that signals through G-protein coupled receptors (GPCRs) to mediate diverse cellular responses. Two LPA receptors, LPA(1) and LPA(2), show gene expression profiles in mouse embryonic cerebral cortex, suggesting roles for LPA signaling in cerebral cortical development. Here, we review loss-of-function and gain-of-function models that have been used to examine LPA signaling. Genetic deletion of lpa(1) or both lpa(1) and lpa(2) in mice results in 50-65% neonatal lethality, but not obvious cortical phenotypes in survivors, suggesting that compensatory signaling systems exist for regulating cortical development. A gain-of-function model, approached by increasing receptor activation through exogenous delivery of LPA, shows that LPA signaling regulates cerebral cortical growth and anatomy by affecting proliferation, differentiation and cell survival during embryonic development.  相似文献   

10.
Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKCβII and PKCθ from cytosol to plasma membrane, and inhibition of PKCβII and PKCθ decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKCβII and PKCθ, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, and LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKCβII and PKCθ. Inhibition of PKCβII or PKCθ, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKCθ in VSMC proliferation is unique.  相似文献   

11.
Lysophosphatidic acid (LPA) induces diverse biological responses in many types of cells and tissues by activating its specific G protein-coupled receptors (GPCRs). Previously, three cognate LPA GPCRs (LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7) were identified in mammals. By contrast, an unrelated GPCR, PSP24, was reported to be a high affinity LPA receptor in Xenopus laevis oocytes, raising the possibility that Xenopus uses a very different form of LPA signaling. Toward addressing this issue, we report two novel Xenopus genes, xlp(A1)-1 and xlp(A1)-2, encoding LP(A1) homologs (approximately 90% amino acid sequence identity with mammalian LP(A1)). Both xlp(A1)-1 and xlp(A1)-2 are expressed in oocytes and the nervous system. Overexpression of either gene in oocytes potentiated LPA-induced oscillatory chloride ion currents through a pertussis toxin-insensitive pathway. Injection of antisense oligonucleotides designed to inhibit xlp(A1)-1 and xlp(A1)-2 expression in oocytes eliminated their endogenous response to LPA. Furthermore, retrovirus-mediated heterologous expression of xlp(A1)-1 or xlp(A1)-2 in B103 rat neuroblastoma cells that are unresponsive to LPA conferred LPA-induced cell rounding and adenylyl cyclase inhibition. These results indicate that XLP(A1)-1 and XLP(A1)-2 are functional Xenopus LPA receptors and demonstrate the evolutionary conservation of LPA signaling over a range of vertebrate phylogeny.  相似文献   

12.
Previous studies have demonstrated that heterotrimeric guanine nucleotide-binding regulatory (Gi) protein-deficient mice exhibit augmented inflammatory responses to lipopolysaccharide (LPS). These findings suggest that Gi protein agonists will suppress LPS-induced inflammatory gene expression. Lysophosphatidic acid (LPA) activates G protein-coupled receptors leading to Gi protein activation. We hypothesized that LPA will inhibit LPS-induced inflammatory responses through activation of Gi-coupled anti-inflammatory signaling pathways. We examined the anti-inflammatory effect of LPA on LPS responses both in vivo and in vitro in CD-1 mice. The mice were injected intravenously with LPA (10 mg/kg) followed by intraperitoneal injection of LPS (75 mg/kg for survival and 25 mg/kg for other studies). LPA significantly increased the mice survival to endotoxemia (P < 0.05). LPA injection reduced LPS-induced plasma TNF-alpha production (69 +/- 6%, P < 0.05) and myeloperoxidase (MPO) activity in lung (33 +/- 9%, P < 0.05) as compared to vehicle injection. LPS-induced plasma IL-6 was unchanged by LPA. In vitro studies with peritoneal macrophages paralleled results from in vivo studies. LPA (1 and 10 microM) significantly inhibited LPS-induced TNFalpha production (61 +/- 9% and 72 +/- 9%, respectively, P < 0.05) but not IL-6. We further demonstrated that the anti-inflammatory effect of LPA was reversed by ERK 1/2 and phosphatase inhibitors, suggesting that ERK 1/2 pathway and serine/threonine phosphatases are involved. Inhibition of phosphatidylinositol 3 (PI3) kinase signaling pathways also partially reversed the LPA anti-inflammatory response. However, LPA did not alter NFkappaB and peroxisome proliferator-activated receptor gamma (PPARgamma) activation. Inhibitors of PPARgamma did not alter LPA-induced inhibition of LPS signaling. These studies demonstrate that LPA has significant anti-inflammatory activities involving activation of ERK 1/2, serine/threonine phosphatases, and PI3 kinase signaling pathways.  相似文献   

13.
The magnitude and duration of G protein-coupled receptor (GPCR) signals are regulated through desensitization mechanisms. In leukocytes, ligand binding to chemokine receptors leads to Ca2+ mobilization and ERK activation through pertussis toxin-sensitive G proteins, as well as to phosphorylation of the GPCR. After interaction with the endocytic machinery (clathrin, adaptin), the adaptor β-arrestin recognizes the phosphorylated GPCR tail and quenches signaling to receptors. The molecular mechanisms that lead to receptor endocytosis are not universal amongst the GPCR, however, and the precise spatial and temporal events in the internalization of the CCR2 chemokine receptor remain unknown. Here we show that after ligand binding, CCR2 internalizes rapidly and reaches early endosomes, and later, lysosomes. Knockdown of clathrin by RNA interference impairs CCR2 internalization, as does treatment with the dynamin inhibitor, dynasore. Our results show that CCR2 internalization uses a combination of clathrin-dependent and -independent pathways, as observed for other chemokine receptors. Moreover, the use of dynasore allowed us to confirm the existence of a dynamin-sensitive element that regulates ERK1/2 activation. Our results indicate additional complexity in the link between receptor internalization and cell signaling.  相似文献   

14.
Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA(1)-LPA(5). In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or "primed," by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA(1)-LPA(4). Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (LPA(1)((-/-))/LPA(2)((-/-))). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.  相似文献   

15.
16.
17.
The serum-derived phospholipid growth factor, lysophosphatidate (LPA), activates cells through the EDG family of G protein-coupled receptors. The present study investigated mechanisms by which dephosphorylation of exogenous LPA by lipid phosphate phosphatase-1 (LPP-1) controls cell signaling. Overexpressing LPP-1 decreased the net specific cell association of LPA with Rat2 fibroblasts by approximately 50% at 37 degrees C when less than 10% of LPA was dephosphorylated. This attenuated cell activation as indicated by diminished responses, including cAMP, Ca(2+), activation of phospholipase D and ERK, DNA synthesis, and cell division. Conversely, decreasing LPP-1 expression increased net LPA association, ERK stimulation, and DNA synthesis. Whereas changing LPP-1 expression did not alter the apparent K(d) and B(max) for LPA binding at 4 degrees C, increasing Ca(2+) from 0 to 50 micrometer increased the K(d) from 40 to 900 nm. Decreasing extracellular Ca(2+) from 1.8 mm to 10 micrometer increased LPA binding by 20-fold, shifting the threshold for ERK activation to the nanomolar range. Hence the Ca(2+) dependence of the apparent K(d) values explains the long-standing discrepancy of why micromolar LPA is often needed to activate cells at physiological Ca(2+) levels. In addition, the work demonstrates that LPP-1 can regulate specific LPA association with cells without significantly depleting bulk LPA concentrations in the extracellular medium. This identifies a novel mechanism for controlling EDG-2 receptor activation.  相似文献   

18.
Recently, we isolated a subset of glycolipoproteins from Panax ginseng, that we designated gintonin, and demonstrated that it induced [Ca2+]i transients in cells via G protein-coupled receptor (GPCR) signaling pathway(s). However, active components responsible for Ca2+ mobilization and the corresponding receptor(s) were unknown. Active component(s) for [Ca2+]i transients of gintonin were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry and ion-mobility mass spectrometry, respectively. The corresponding receptor(s)were investigated through gene expression assays. We found that gintonin contains LPA C18:2 and other LPAs. Proteomic analysis showed that ginseng major latex-like protein and ribonuclease-like storage proteins are protein components of gintonin. Gintonin induced [Ca2+]i transients in B103 rat neuroblastoma cells transfected with human LPA receptors with high affinity in order of LPA2 >LPA5 > LPA1 > LPA3 > LPA4. The LPA1/LPA3 receptor antagonist Ki16425 blocked gintonin action in cells expressing LPA1 or LPA3. Mutations of binding sites in the LPA3 receptor attenuated gintonin action. Gintonin acted via pertussis toxin (PTX)-sensitive and -insensitive G protein-phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3)-Ca2+ pathways. However, gintonin had no effects on other receptors examined. In human umbilical vein endothelial cells (HUVECs) gintonin stimulated cell proliferation and migration. Gintonin stimulated ERK1/2 phosphorylation. PTX blocked gintonin-mediated migration and ERK1/2 phosphorylation. In PC12 cells gintonin induced morphological changes, which were blocked by Rho kinase inhibitorY-27632. Gintonin contains GPCR ligand LPAs in complexes with ginseng proteins and could be useful in the development of drugs targeting LPA receptors.  相似文献   

19.
Lysophosphatidic acid (LPA) is a serum-borne phospholipid that activates its own G protein-coupled receptors present in numerous cell types. In addition to stimulating cell proliferation, LPA also induces cytoskeletal changes and promotes cell migration in a RhoA- and Rac-dependent manner. Whereas RhoA is activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors, it is unknown how LPA receptors may signal to Rac. Here we report that the prototypic LPA(1) receptor (previously named Edg2), when expressed in B103 neuroblastoma cells, mediates transient activation of RhoA and robust, prolonged activation of Rac leading to cell spreading, lamellipodia formation, and stimulation of cell migration. LPA-induced Rac activation is inhibited by pertussis toxin and requires phosphoinositide 3-kinase activity. Strikingly, LPA fails to activate Rac in cell types that lack the Rac-specific exchange factor Tiam1; however, enforced expression of Tiam1 restores LPA-induced Rac activation in those cells. Tiam1-deficient cells show enhanced RhoA activation, stress fiber formation, and cell rounding in response to LPA, consistent with Tiam1/Rac counteracting RhoA. We conclude that LPA(1) receptors couple to a G(i)-phosphoinositide 3-kinase-Tiam1 pathway to activate Rac, with consequent suppression of RhoA activity, and thereby stimulate cell spreading and motility.  相似文献   

20.
As our understanding of the myriads of biological effects caused by lysophospholipids expands, we become witnesses to another miracle of nature that has endowed the simplest lysophospholipids with functions seemingly ubiquitous to every mammalian cell. A decade after the discovery of the EDG family lysophospholipid receptors, the field has gained unimaginable impetus explaining the biological effects of sphingosine-1-phosphate and lysophosphatidic acid (LPA). The discovery of LPA receptors in the purinergic G-protein-coupled receptor (GPCR) gene cluster refined this picture and added complexity to our concepts of lysophospholipid cell signaling. The intracellular lysophospholipid targets - identified and not yet identified - make us realize the dual mediator and second messenger roles of lysophospholipids. In this paper we provide new data obtained concerning LPA-elicited responses using cell lines naturally lacking or intentionally knocked out of many of the known LPA GPCR, widely used by investigators in the field as cells with LPA receptor "null background." Our observations raise caution about the lack of LPA responsiveness in these cells and underline the unprecedented complexity and redundancy of lysophospholipid-evoked cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号