首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Signaling Pathways for Ecdysteroid Hormone Synthesis in Crustacean Y-organs   总被引:3,自引:2,他引:1  
The Y-organs of crustaceans secrete steroid hormones (ecdysteroids)which are responsible for molting and regeneration. The Y-organsin turn are controlled (negatively) by the eyestalk peptide,molt-inhibiting hormone (MIH). We are exploring the signalingpaths in Y-organ cells that lead to ecdysteroid generation whenactivated by the absence of MIH. The objective is to understandthe connections between MIH-receptor occupancy and the depressionof genes that express ecdysteroidogenic enzymes. MIH actionis mediated by a rise in cyclic 5' adenosine monophosphate (cAMP);cGMP also is involved in some species. That a cyclic nucleotideis a central regulatory component is indicated by the followingselection of results: dibutyryl cAMP, activators of adenylylcyclase or inhibitors of cyclic nucleotide phosphodiesteraseeach mimic the inhibitory action of MIH. Cyclic AMP inhibitsthe receptor-mediated uptake of cholesterol (the obligate ecdysteroidprecursor), by decreasing the number of receptor sites for thelipoprotein carrier of cholesterol. MIH via cAMP also depressesde novo protein synthesis upon which ecdysteroidogenesis dependsin part. A role for cellular free calcium (Ca++) is indicatedby the ability of Ca++ (or a Ca++ionophore) to stimulate ecdysteroidproduction,thereby antagonizing MIH action. The mechanism involvesloweringcAMP levels by enhancing phosphodiesterase activity via calmodulin,not by affecting adenylate cyclase activity. Ca++ counters thesuppressive action of MIH or cAMP on protein synthesis. Consistentwith the MIH-Ca++ mutual antagonism, MIH increases Ca++ effluxfrom 45Ca-preloaded cells. Y-Organ cells contain protein kinaseC (PKC), the activation of which increases ecdysteroid production.PKC activity is not affected by MIH, but is stimulated by Ca++.These and related experiments indicate that the PKC-activatedincrease in ecdysteroidogenesis involves events downstream fromthe production of cAMP and the degradation of cAMP by Ca++.In relation to the latter, specific and non-specific inhibitorsof protein tyrosine kinases (PTK) inhibit ecdysteroid synthesisdose-dependently. The relationship of PTK with MIH-cAMP andCa++-PKC systems is under study.  相似文献   

2.
Molting processes in crustaceans are regulated by ecdysteroids produced in the molting gland (Y-organ), and molting is indirectly controlled by circulating factors that inhibit the production of these polyhydroxylated steroids. Two of these regulatory factors are the neuropeptides molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). CHH appears to inhibit ecdysteroidogenesis in the Y-organ through the activation of a receptor guanylyl cyclase. The signaling pathway activated by MIH, however, remains a subject of controversy. It is clear that neuropeptides inhibit ecdysteroidogenesis by simultaneously suppressing ecdysteroid biosynthetic processes, protein synthesis, and uptake of high density lipoproteins. Data demonstrate that cAMP is the primary regulator of critical catabolic, anabolic, and transport processes, which ultimately support the capacity for ecdysteroid production by the Y-organ. While cAMP also regulates acute ecdysteroidogenesis to some extent, data indicate that cGMP is the primary signaling molecule responsible for acute inhibition by neuropeptides. It is clear that the regulatory roles filled by cAMP and cGMP are conserved among decapod crustaceans. It is unknown if these complementary second messengers are linked in a single signaling pathway or are components of independent pathways activated by different factors present in extracts of eyestalk ganglia.  相似文献   

3.
The presence of a vasopressin (VP)- or vasotocin (VT)-like peptide in the central nervous system of the gastropod mollusc Aplysia has been indicated previously. In the case of Aplysia californica, HPLC and RIA evidence suggested the peptide was VT-like but not identical with the nonmammalian vertebrate peptide [Arg8]VT (AVT). In the present study, anterior ganglia extracts from the related species Aplysia kurodai were analyzed by HPLC followed by RIA. Further analysis of the major AVT-IR peak showed it to be indistinguishable, in three distinct solvent systems, from the sea snail venom peptide Lys-conopressin G, but to be different from the vertebrate peptides [Arg8]VP (AVP), [Lys8]VP (LVP), AVT, oxytocin (OT), mesotocin, isotocin, aspargtocin, glumitocin, and valitocin, from the sea snail venom peptide Arg-conopressin S, and from the peptides [Lys8]VT and [Gln8]OT. In addition, the carboxymethylated (CM) A. kurodai peptide had the same HPLC retention time as CM-Lys-conopressin G. The HPLC/RIA results suggest that (i) based on the properties of the solvent systems used, the A. kurodai peptide has two basic amino acids (like the conopressins but unlike the vertebrate peptides), and (ii) there is a high probability that the A. kurodai peptide is identical with Lys-conopressin G.  相似文献   

4.
Summary

Ecdysteroid synthesis is regulated in insects by prothoracicotropic hormone (PTTH) and in crustaceans by molt-inhibiting hormone (MIH). These neurohormones exert opposite effects on their respective target tissues, PTTH stimulating the prothoracic glands and MIH inhibiting the Y-organs. The present work reviews recent progress in the neurohormonal regulation of prothoracic gland and Y-organ function. The steroid products of these glands are briefly discussed, as is current information on the structures of PTTH and MIH. Focus is placed on the mechanism of action of these hormones at the cellular level, as well as developmental changes in cellular sensitivity to PTTH. Though exerting different effects on ecdysteroid secretion, both PTTH and MIH increase cyclic nucleotide second messengers, are influenced by alterations in cellular calcium, and are likely to activate protein kinases. The contrasting steroidogenic effects of PTTH and MIH probably arise from differences in the cellular kinase substrates. In insects, such substrates enhance ecdysteroid secretion, possibly by increasing the translation of glandular proteins. In crustaceans, MIH-stimulated changes lead to the inhibition of both protein synthesis and steroidogenesis.  相似文献   

5.
Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (3H)-AVP was found to bind to a single class of sites with high affinity (Kd = 2.20 +/- 0.18 nM) and low capacity (Bmax = 17.4 +/- 1.8 fmol/10(6) Leydig cells). Binding displacements with specific selective analogs of AVP indicated the presence of V1 subtype receptors on Leydig cells. The ability of AVP to displace (3H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (3H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells (P less than 0.001). This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation (P less than 0.01). AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation (P less than 0.001). This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels. We conclude from these data that AVP is capable of modulating steroidogenesis in Leydig cells through specific and functionally V1 receptor subtype and postulate that this effect may be part of an intratesticular paracrine/autocrine control mechanism.  相似文献   

6.
The effects of oxytocin and vasopressin and their agonists on the secretion of progesterone and oestradiol-17β by bovine luteinised granulosa cells cultured in a serum-supplemented medium were analysed. The effects of oxytocin (OT), its long-acting agonist 2-0-methyl-tyrosin (deamino-karba)-oxytocin (DK-OT), arginine-8-vasopressin (AVP), 1-desamino-arginine-8-vasopressin (D-AVP, a vasopressin analogue with high antidiuretic and without vasopressor properties) and arginine-8-vasotocin (AVT) were investigated. It was found that OT and DK-OT had a stimulatory effect on progesterone release, while AVP, D-AVP and AVT had an inhibitory effect. All peptide hormones investigated significantly increased oestradiol-17β secretion. The results suggest the involvement of nonapeptide hormones of both oxytocin and vasopressin groups in the regulation of steroidogenesis by granulosa cells from bovine ovarian follicles.  相似文献   

7.
Paired Y-organs secrete ecdysteroid hormones that control cycles of growth and molting in crustaceans. Y-Organs are regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide produced and released by the X-organ/sinus gland complex of the eyestalks. In the present studies, crab (Callinectes sapidus) Y-organs were incubated in vitro in the presence of [(35)S]methionine, and cyclic nucleotide analogs or experimental agents that influence the cAMP signaling pathway. In 4-hr incubations, 8-Br-cAMP and db-cAMP (but not 8-Br-cGMP) suppressed incorporation of [(35)S]methionine into Y-organ proteins; the effect of 8-Br-cAMP was concentration-dependent. Autoradiograms of radiolabeled Y-organ proteins separated on SDS-PAGE gels indicated the effect of 8-Br-cAMP was general (as opposed to selective) suppression of protein synthesis. Addition of both forskolin (an adenylyl cyclase activator) and 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) likewise suppressed incorporation of [(35)S]methionine into Y-organ proteins. Cycloheximide (a protein synthesis inhibitor) suppressed incorporation of [(35)S]methionine into Y-organ proteins and secretion of ecdysteroids. The combined results suggest that cAMP is involved in regulation of protein synthesis in C. sapidus Y-organs. We are currently investigating the link of protein synthesis to ecdysteroid production, and the possibility of cross-talk between cAMP and other cellular signaling pathways in Y-organs.  相似文献   

8.
In Crustacea, secretion of ecdysteroid molting hormones by Y-organs is regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide neurohormone produced by neurosecretory cells of the eyestalks. This article reviews current knowledge of MIH, with particular emphasis on recent findings regarding the (a) structure of the MIH peptide and gene, (b) levels of MIH in eyestalks and hemolymph, (c) cellular mechanism of action of MIH, and (d) responsiveness of Y-organs to MIH. At least 26 MIH/MIH-like sequences have been directly determined by protein sequencing or deduced from cloned cDNA. Recent studies reveal the existence of multiple forms of MIH/MIH-like molecules among penaeids and raise the possibility that molecular polymorphism may exist more generally among MIH (type II) peptides. The hemolymphatic MIH titer has been determined for two species, a crayfish (Procambarus clarkii) and a crab (Carcinus maenas). The data are dissimilar and additional studies are needed. Composite data indicate cellular signaling pathways involving cGMP, cAMP, or both may play a role in MIH-induced suppression of ecdysteroidogenesis. Data from the two species studied in our laboratories (P. clarkii and Callinectes sapidus) strongly favor cGMP as the physiologically relevant second messenger. Ligand-binding studies show an MIH receptor exists in Y-organ plasma membranes, but the MIH receptor has not been isolated or fully characterized for any species. Such studies are critical to understanding the cellular mechanism by which MIH regulates ecdysteroidogenesis. Rates of ecdysteroid synthesis appear also to be influenced by stage-specific changes in the responsiveness of Y-organs to MIH. The changes in responsiveness result, at least in part, from changes in glandular phosphodiesterase (PDE) activity. The PDE isotype (PDE1) present in Y-organs of C. sapidus is calcium/calmodulin dependent. Thus, calcium may regulate ecdysteroidogenesis through activation of glandular PDE.  相似文献   

9.
The crustacean molt-inhibiting hormone (MIH) suppresses ecdysteroid synthesis by the Y-organ. The MIH of the kuruma prawn Penaeus japonicus has recently been isolated and its cDNA cloned. In this study, we expressed the MIH in Escherichia coli to obtain a large quantity of this hormone with biological activity. The MIH cDNA was processed and ligated into an expression plasmid. E. coli was transformed with this plasmid, and then the recombinant MIH (r-MIH) was expressed. The r-MIH was put through the refolding reaction and was purified by reverse-phase HPLC. N-terminal amino acid sequence and time-of-flight mass spectral analyses supported the idea that the r-MIH had the entire sequence. By in vitro bioassay using the Y-organ of the crayfish, the r-MIH was found to be comparable to natural MIH in inhibiting ecdysteroid synthesis.  相似文献   

10.
The crustacean molt-inhibiting hormone (MIH) suppresses ecdysteroid synthesis by the Y-organ. The MIH of the kuruma prawn Penaeus japonicus has recently been isolated and its cDNA cloned. In this study, we expressed the MIH in Escherichia coli to obtain a large quantity of this hormone with biological activity. The MIH cDNA was processed and ligated into an expression plasmid. E. coli was transformed with this plasmid, and then the recombinant MIH (r-MIH) was expressed. The r-MIH was put through the refolding reaction and was purified by reverse-phase HPLC. N-terminal amino acid sequence and time-of-flight mass spectral analyses supported the idea that the r-MIH had the entire sequence. By in vitro bioassay using the Y-organ of the crayfish, the r-MIH was found to be comparable to natural MIH in inhibiting ecdysteroid synthesis.  相似文献   

11.
In experiments on male rats arginyl-vasopressin (AVP), lysyl-vasopressin (LVP) and vasotocin (VT) in doses of 0.005-0.010 mg/kg decreased motor activity and emotional behaviour in the open field test. In a dose of 0.001 mg/kg AVP significantly accelerated the elaboration of active avoidance; oxytocin delayed it, but LVP and VT had no significant influence. AVP also somewhat attenuated the elaboration of passive avoidance. None of the four studied peptides significantly affected the rate of elaboration of conditioned food-rewarded reaction to place.  相似文献   

12.
The Y-organs of crustaceans secrete ecdysteroids (molting hormones)and are regulated (negatively) by a neurosecretory peptide,molt-inhibiting hormone (MIH). Signaling path(s) in Y-organswere explored that connect MIH receptors ultimately with suppressionof receptor number for the uptake of cholesterol (ecdysteroidprecursor) and of gene expression of steroidogenic enzymes.Experiments were conducted in vitro with Y-organs of crabs (Cancerantennarius, Menippe mercenaria) and crayfishes (Orconectessp.). It was confirmed in all species that steroidogenesis occursin the absence of external calcium (Ca++), but increases toa maximum as Ca++ is increased to 1 to 10 mM and is substantiallyinhibited at higher Ca++ concentrations. MIH does not requireexternal Ca++ for inhibitory action, but inhibition is eliminatedby high Ca++concentrations. Several experimental approachesfailed to find evidence of phospholipase C activation, turnoverof inositol triphosphate or diacylglycerol generation connectedwith steroidogenesis. Unbinding or chelation of intracellularCa++ with thapsigargin or TMB-8, respectively both caused dose-dependentinhibition of ecdysteroid output. Blockade of Ca++ channelswith verapamil, nifedipine or nicardipine also inhibited steroidogenesis;highest doses inhibited profoundly to below Ca++-free basallevels. Inhibition also was obtained with all doses of the Ca++channel agonist/antagonist (–) BAY K 8644 in crabs, butin crayfishes lower doses were stimulatory. However, if thecrayfish cells were depolarized, allowing greater Ca++ influx,the previously stimulatory doses of BAY K 8644 became inhibitory.Y-organ protein kinase C (PKC) is Ca++-sensitive. Activationof PKC was uniformly stimulatory in crabs, but inhibitory incrayfishes. Cytochalasin D, which disrupts the actin cytoskeleton,and which causes moderate Ca++ influx, stimulated hormone formation.These results are interpreted to indicate a regulatory rolefor Ca++ in ecdysteroidogenesis, involving a local, submembranecirculation of Ca++ through ion channels and Ca++ pumps andinteraction with PKC in phosphorylating key proteins. An optimallocal Ca++ environment fostering hormone synthesis is evidentsince too little or too much Ca++ is inhibitory. Methyl farnesoate (MF) had no effect on ecdysone productionin crab or crayfish Y-organs in 24-hr incubations with MF at100 pM to 10 µM.  相似文献   

13.
The response of cAMP to antidiuretic hormone (ADH) was studied using rat renal medullary cells in a monolayer culture. In addition, cAMP response to parathyroid hormone (PTH) was studied in renal cortical cells. As the culture aged, an increase in basal cAMP content and a gradual decrease in the cAMP responsiveness to arginine vasopressin (AVP) were observed. After 2 days of culture, AVP and hPTH-(1-34) produced a rapid increase in intracellular cAMP with single peaks, after 10 min and 5 min, respectively. Extracellular cAMP was increased linearly by both AVP and hPTH-(1-34). The response of cAMP to AVP was markedly greater in the medulla than in the cortex, while the response to hPTH-(1-34) was remarkable only in the cortex. Outstanding sensitivity of cAMP responsiveness was observed in this system, i.e., 10(-12) M AVP (1 pg/ml) and 2.43 X 10(-10) M hPTH-(1-34) (1 ng/ml) provoked significant increases in cAMP from the basal level of 0.31 +/- 0.04 and 0.59 +/- 0.05 pmol/dish to 0.79 +/- 0.03 and 1.07 +/- 0.13 pmol/dish, respectively (P less than 0.001). In the medulla, potencies of lysine vasopressin (LVP), DDAVP and oxytocin at a concentration of 10(-9) M were 76.1%, 154.2% and 8.1% of that of AVP, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ecdysteroid secretion in vitro by gland quarters and dispersed cells of ecdysial glands (Y-organs) of the crab, Cancer antennarius Stimpson, was characterized. Optimum culture conditions are reported for maximum, sustained (72 hr) secretion and maintenance of cell viability in activated Y-organs obtained from de-eyestalked donors. Addition in vitro of eyestalk ganglia extracts containing the putative molt-inhibiting hormone (MIH) inhibited ecdysteroid production dose-dependently in the range of 0.1-4.0 and 0.01-4.0 eyestalk equivalents of MIH for gland quarters and dispersed cells, respectively. Inhibition by MIH was reversible, tissue specific as to source of MIH activity, and did not affect cell viability relative to controls. The results of replicate incubations of gland quarters with MIH were analyzed with formal statistics of parallel-line assay. The inhibitory action on ecdysteroid secretion is shown to be reproducibly linear and parallel in the dosage range, 0.1-4.0 eyestalk equivalents, amenable to calculation of relative potency among successive extracts, and of sufficiently high precision to serve as an MIH bioassay. Also, the results of these studies support the hypothesis that control of Y-organs by the eyestalks is physiologically direct.  相似文献   

15.
Cholesterol is the obligate precursor for ecdysteroid hormone synthesis by the ecdysial glands (Y-organs) in crustaceans, and all cholesterol in the hemolymph is bound to high-density lipoprotein (HDL). The mechanism was studied of how Y-organ cells acquire cholesterol. Y-organ segments were incubated with HDL isolated from hemolymph and labeled with 125I. After incubation, tissue was homogenized in acid to determine radioactivity in acid-precipitable (cell associated, intact) HDL and in acid-soluble (degraded) HDL. Both HDL uptake and degradation showed saturation kinetics. At saturation most of the total counts represented degraded HDL; by 3 h, degradation was 80%. Rates of HDL uptake and breakdown were higher in Y-organs from de-eyestalked crabs (deprived thereby of molt-inhibiting hormone, MIH) than in glands from intact crabs. Both parameters were depressed by inhibitors of glycolysis and oxidative phosphorylation dose dependently and by low temperature. HDL uptake also was depressed by cAMP added to the medium experimentally or through efflux from the tissue during incubation. These results indicate a mechanism for HDL uptake that entails receptor-mediated, energy-dependent endocytosis of the entire HDL-cholesterol complex. Also the results suggest that HDL uptake and degradation are mediated by cAMP and depressed by an eyestalk factor, presumably MIH. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Lee KJ  Watson RD 《Peptides》2002,23(5):853-862
In crustaceans, the synthesis of ecdysteroid molting hormones is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced by an eyestalk neuroendocrine system, the X-organ/sinus gland complex. Using sequence analysis software, two regions of the blue crab (Callinectes sapidus) MIH peptide were selected for antibody production. Two 14-mer peptides were commercially synthesized and used to generate polyclonal antisera. Western blot analysis revealed that each antiserum bound to proteins of the predicted size in extracts of C. sapidus sinus glands, and lysates of insect cells containing recombinant MIH. Thin section immunocytochemistry using either antiserum showed specific immunoreactivity in X-organ neurosecretory cell bodies, their associated axons and collaterals, and their axon terminals in the sinus gland.  相似文献   

17.
The total Na+/K + ATP-ase activity of the thick ascending limb of the loop of Henlé may be stimulated by arginine-vasopressin (AVP). Lysine-vasopressin (LVP), oxytocin (OT), and arginine-vasotocin (AVT) produce less than 5% of the enzyme activity induced by the same concentration of AVP. Physiological concentrations of a mixture of other hormones with known activity on the kidney (T3, T4 aldosterone, angiotensin II, and OT) did not significantly increase total Na+/K + ATP-ase activity. Specific AVP antiserum consistently removed greater than 90% of the stimulatory effect of plasma. The concentration of AVP in plasmas from dehydrated subjects was greater than l0 times that of the same subjects hydrated. Intra-assay coefficient of variation was 35% and 52% from 200 l and 20 l of plasma respectively. The interassay coefficient of variation was 53% and 55% from plasma pools with high and low AVP content.  相似文献   

18.
Y-organs are the ecdysial glands of crustaceans, responsible for synthesis and secretion of ecdysteroid hormones. For this purpose, the glands acquire cholesterol as obligate precursor entirely from circulating high-density lipoprotein (HDL). A preceding study provided evidence for the mechanism of acquisition: Y-organs take up cholesterol bound to HDL by an energy-requiring process, receptor-mediated absorptive endocytosis. The present study characterized the receptors involved utilizing isolated Y-organ membranes. HDL binding was saturable and specific; a dissociation constant (Kd) of 1.08 × 10?7 M and a binding maximum at equilibrium (Bmax) of 70 μg HDL protein/mg membrane protein, were obtained. Binding was decreased by protease and was dependent upon calcium. Y-organs are regulated negatively by a peptide hormone from the eystalks, molt-inhibiting hormone (MIH). Y-organ membranes from de-eyestalked crabs (MIH absent) exhibited the same Kd value as membranes from intact crabs, but a Bmax 17% higher. Thus, MIH activity apparently does not change the binding affinity of HDL, but decreases the number of binding sites. These results agree with our previous findings that MIH depresses ecdysteroid synthesis in part by inhibiting cholesterol uptake. Generally, Y-organ cells appear to contain receptors for HDL that are of high affinity and high binding capacity, similar to the characteristics reported for the binding of insect HDL (vitellogenin) to fat bodies and oocytes. © 1995 Wiley-Liss, Inc.  相似文献   

19.
To determine the role of arginine vasopressin (AVP) in stress-induced release of anterior pituitary hormones, AVP antiserum or normal rabbit serum (NRS) was micro-injected into the 3rd ventricle of freely-moving, ovariectomized (OVX) female rats. A single 3 microliter injection was given, and 24 hours later, the injection was repeated 30 min prior to application of ether stress for 1 min. Although AVP antiserum had no effect on basal plasma ACTH concentrations, the elevation of plasma ACTH induced by ether stress was lowered significantly. Plasma LH tended to increase following ether stress but not significantly so; however, plasma LH following stress was significantly lower in the AVP antiserum-treated group than in the group pre-treated with NRS. Ether stress lowered plasma growth hormone (GH) levels and this lowering was slightly but significantly antagonized by AVP antiserum. Ether stress also elevated plasma prolactin (Prl) levels but these changes were not significantly modified by the antiserum. To evaluate any direct action of AVP on pituitary hormone secretion, the peptide was incubated with dispersed anterior pituitary cells for 2 hours. A dose-related release of ACTH occurred in doses ranging from 10 ng (10 p mole)-10 micrograms/tube, but there was no effect of AVP on release of LH. The release of other anterior pituitary hormones was also not affected except for a significant stimulation of TSH release at a high dose of AVP. The results indicate that AVP is involved in induction of ACTH and LH release during stress. The inhibitory action of the AVP antiserum on ACTH release may be mediated intrahypothalamically by blocking the stimulatory action of AVP on corticotropin-releasing factor (CRF) neurons and/or also in part by direct blockade of the stimulatory action of vasopressin on the pituitary. The effects of vasopressin on LH release are presumably brought about by blockade of a stimulatory action of AVP on the LHRH neuronal terminals.  相似文献   

20.
The present study was undertaken to determine whether human atrial natriuretic factor (hANF) produces guanosine-3', 5'-monophosphate (cGMP) and alters arginine vasopressin (AVP)- and forskolin (F)- induced adenosine-3', 5'-monophosphate (cAMP) production in the cultured rat renal papillary collecting tubule cells. hANF increased cellular cGMP levels in a dose dependent manner. AVP and F, however, did not affect cGMP production. hANF significantly inhibited AVP- and F-stimulated cAMP levels, but hANF by itself did not affect cellular cAMP production. Since F activates adenylate cyclase at a step of catalytic unit and the cellular action of AVP to activate adenylate cyclase is mediated through receptor-catalytic units, the present results indicate that hANF may directly inhibit the AVP- and F-stimulated adenylate cyclase in renal papillary collecting tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号