首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Elongation of very long chain fatty acids 4 (ELOVL4) is a novel member of the ELO family of genes that are involved in fatty acid metabolism. ELOVL4 encodes a putative transmembrane protein of 314 amino acids that carries a possible endoplasmic reticulum (ER) retention/retrieval signal (KXKXX) at the C-terminus. Two distinct mutations, a 5-bp deletion and a complex mutation from the same region in exon 6 of this gene, have been reported so far and are associated with autosomal dominant atrophic macular degeneration (adMD/STGD3). Both of these deletions could result in C-terminal truncation and loss of the ER retention signal in the mutant protein. We expressed the wild-type and mutant proteins in COS-7 and CHO cells to study the intracellular distribution of ELOVL4 and to identify possible implications of the above mutations in its localization. Immunofluorescence analysis of these proteins along with organelle marker antibodies revealed predominant ER localization for wild-type ELOVL4. Targeted deletion of the dilysine motif at the C-terminus of the protein resulted in the loss of ER localization. Immunoelectron microscopy and immunofluorescence analysis revealed a similar ER localization pattern for the protein in human photoreceptors. These data indicate that ELOVL4 is an ER-resident protein, which supports its suggested function in fatty acid elongation. We also demonstrate that the localization of both mutant proteins was dramatically changed from an ER to a Golgi distribution. Our observations suggest that the consequences of defective protein trafficking could underlie the molecular mechanism associated with degeneration of the macula in the patients with adMD/STGD3.  相似文献   

2.
Autosomal dominant Stargardt-like macular dystrophy (STGD3) in humans results from mutations in elongation of very long chain FAs-like 4 (ELOVL4), which leads to vision loss in young adults. ELOVL4 is an integral endoplasmic reticulum (ER) protein that mediates the elongation of very long chain (VLC) FAs. Mutations in ELOVL4 lead to truncation and mislocalization of the translated protein from the ER, the site of FA elongation. Little is known about the enzymatic elongation of VLC-FAs by ELOVL4. We over-expressed full-length mouse ELOVL4, an N-glycosylation-deficient mutant, an ER-retention mutant, and mutants of active site histidines to parse their individual roles in VLC-FA elongation. ELOVL4 elongated appropriate precursors to the corresponding VLC-FA species ≥28 carbons. Active site histidine mutants of ELOVL4 did not elongate appropriate precursors, establishing ELOVL4 as the elongase. Displacing ELOVL4 from the ER was sufficient to cause loss of condensation activity, while absence of N-glycosylation was irrelevant for enzyme function. This study shows that ELOVL4 enzymatic activity is governed by individual histidines in its active site and the ER microenvironment, both of which are essential for elongation of VLC-FAs.  相似文献   

3.
ELOVL4, elongation factor of very long chain fatty acids-4, is known to be responsible for autosomal dominant macular degeneration and Stargardt-like macular degeneration. In this study, we cloned the monkey homologue of ELOVL4 and determined the cellular and tissue distribution of the gene product. Sequence analysis of the monkey ELOVL4 gene revealed a high degree of homology between human and monkey. The cloned full-length cDNA of monkey ELOVL4 encoded 314 amino acids, the same length as human and two amino acids longer than mouse. The monkey ELOVL4 conserved the characteristics typical of the super family of ELO enzymes involved in the metabolism of membrane-bound fatty acid elongation. Real-time quantitative PCR demonstrated that the monkey ELOVL4 gene was highly expressed in restricted tissue-specific fashion, not only in the retina but also in the skin (90% of retina) and thymus (111% of retina). Immunohistochemical analysis detected signals predominantly in the photoreceptor layer of the monkey retina.  相似文献   

4.
We hypothesized that reduction/loss of very long chain PUFAs (VLC-PUFAs) due to mutations in the ELOngase of very long chain fatty acid-4 (ELOVL4) protein contributes to retinal degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3) and age-related macular degeneration; hence, increasing VLC-PUFA in the retina of these patients could provide some therapeutic benefits. Thus, we tested the efficiency of elongation of C20-C22 PUFA by the ELOVL4 protein to determine which substrates are the best precursors for biosynthesis of VLC-PUFA. The ELOVL4 protein was expressed in pheochromocytoma cells, while green fluorescent protein-expressing and nontransduced cells served as controls. The cells were treated with 20:5n3, 22:6n3, and 20:4n6, either individually or in equal combinations. Both transduced and control cells internalized and elongated the supplemented FAs to C22-C26 precursors. Only ELOVL4-expressing cells synthesized C28-C38 VLC-PUFA from these precursors. In general, 20:5n3 was more efficiently elongated to VLC-PUFA in the ELOVL4-expressing cells, regardless of whether it was in combination with 22:6n3 or with 20:4n6. In each FA treatment group, C34 and C36 VLC-PUFAs were the predominant VLC-PUFAs in the ELOVL4-expressing cells. In summary, 20:5n3, followed by 20:4n6, seems to be the best precursor for boosting the synthesis of VLC-PUFA by ELOVL4 protein.  相似文献   

5.
Very long chain fatty acids (VLCFA), either free or as components of glycerolipids and sphingolipids, are present in many organs. Elongation of very long chain fatty acids-4 (ELOVL4) belongs to a family of 6 members of putative fatty acid elongases that are involved in the formation of VLCFA. Mutations in ELOVL4 were found to be responsible for an autosomal dominant form of Stargardt's-like macular dystrophy (STGD3) in human. We have previously disrupted the mouse Elovl4 gene, and found that Elovl4+/- mice were developmentally normal, suggesting that haploinsufficiency of ELOVL4 is not a cause for the juvenile retinal degeneration in STGD3 patients. However, Elovl4-/- mice died within several hours of birth for unknown reason(s). To study functions of ELOVL4 further, we have explored the causes for the postnatal lethality in Elovl4-/- mice. Our data indicated that the mutant mice exhibited reduced thickness of the dermis, delayed differentiation of keratinocytes, and abnormal structure of the stratum corneum. We showed that all Elovl4-/- mice exhibited defective skin water permeability barrier function, leading to the early postnatal death. We further showed that the absence of ELOVL4 results in depletion in the epidermis of ceramides with omega-hydroxy very long chain fatty acids (> or = C28) and accumulation of ceramides with non omega-hydroxy fatty acids of C26, implicating C26 fatty acids as possible substrates of ELOVL4. These data demonstrate that ELOVL4 is required for VLCFA synthesis that is essential for water permeability barrier function of skin.  相似文献   

6.
Type I transglutaminase (TG1) is an enzyme that is responsible for assembly of the keratinocyte cornified envelope. Although TG1 mutation is an underlying cause of autosomal recessive congenital ichthyosis, a debilitating skin disease, the pathogenic mechanism is not completely understood. In the present study we show that TG1 is an endoplasmic reticulum (ER) membrane-associated protein that is trafficked through the ER for ultimate delivery to the plasma membrane. Mutation severely attenuates this processing and a catalytically inactive point mutant, TG1-FLAG(C377A), accumulates in the endoplasmic reticulum and in aggresome-like structures where it is ubiquitinylated. This accumulation results from protein misfolding, as treatment with a chemical chaperone permits it to exit the endoplasmic reticulum and travel to the plasma membrane. ER accumulation is also observed for ichthyosis-associated TG1 mutants. Our findings suggest that misfolding of TG1 mutants leads to ubiquitinylation and accumulation in the ER and aggresomes, and that abnormal intracellular processing of TG1 mutants may be an underlying cause of ichthyosis.  相似文献   

7.
The NH2-terminus of the plasma membrane H+-ATPase is one of the least conserved segments of this protein among fungi. We constructed and expressed a mutant H+-ATPase from Saccharomyces cerevisiae deleted at an internal peptide within the cytoplasmic NH2-terminus (D44-F116). When the enzyme was subjected to limited trypsinolysis it was digested more rapidly than wild type H+-ATPase. Membrane fractionation experiments and immunofluorescence microscopy, using antibodies against H+-ATPase showed that the mutant ATPase is retained in the endoplasmic reticulum. The pattern observed in the immunofluorescence microscopy resembled structures similar to Russell bodies (modifications of the endoplasmic reticulum membranes) recently described in yeast. When the wild type H+-ATPase was co-expressed with the mutant, wild type H+-ATPase was also retained in the endoplasmic reticulum. Co-expression of both ATPases in a wild type yeast strain was lethal, demonstrating that this is a dominant negative mutant.  相似文献   

8.
Lymphotoxin-beta receptor (LTbetaR), a member of the tumor necrosis factor receptor superfamily, is essential for the development and organization of secondary lymphoid tissue. Wild type and mutant LTbetaR containing successive truncations of the cytoplasmic domain were investigated by retrovirus-mediated gene transfer into HT29.14s and in 293T cells by transfection. Wild type receptors accumulated in perinuclear compartments and enhanced responsiveness to ligand-induced cell death and ligand-independent activation of NFkappaB p50 dimers. Coimmunoprecipitation and confocal microscopy mapped the TRAF3 binding site to amino acids PEEGDPG at position 389. However, LTbetaR truncated at position Pro(379) acted as a dominant positive mutant that down-modulated surface expression and recruited TRAF3 to endogenous LTbetaR. This mutant exhibited ligand-independent cell death and activated NF-kappaB p50 dimers. By contrast, truncation at Gly(359) created a dominant-negative mutant that inhibited ligand-induced cell death and activation of NF-kappaB p50/p65 heterodimers. This mutant also blocked accumulation of wild type receptor into perinuclear compartments, suggesting subcellular localization may be crucial for signal transduction. A cryptic TRAF-independent NF-kappaB activating region was identified. These mutants define discrete subregions of a novel proline-rich domain that is required for subcellular localization and signal transduction by the LTbetaR.  相似文献   

9.
We have examined the distribution of MYOA, the class I myosin protein of the filamentous fungus Aspergillus nidulans, as a GFP fusion protein. Wild type GFP-MYOA expressed from the myoA promoter is able to rescue a conditional myoA null mutant. Growth of a strain expressing GFP-MYOA as the only class I myosin was approximately 50% that of a control strain, demonstrating that the fusion protein retains substantial myosin function. The distribution of the wild type GFP-MYOA fusion is enriched in growing hyphal tips and at sites of septum formation. In addition, we find that GFP-MYOA is also found in patches at the cell cortex. We have also investigated the effects of deletion or truncation mutations in the tail domain on MYOA localization. Mutant GFP-MYOA fusions that lacked either the C-terminal SH3 or a portion of the C-terminal proline-rich domain had subcellular distributions like wild type MYOA, consistent with their ability to complement a myoA null mutant. In contrast, mutants lacking all of the C-terminal proline-rich domain or the TH-1-like domain were mainly localized diffusely throughout the cytoplasm, but could less frequently be found in patches, and were unable to complement a myoA null mutant. The GFP-MYOA DeltaIQ mutant was localized into large bright fluorescent patches in the cytoplasm. This mutant protein was subsequently found to be insoluble.  相似文献   

10.
The C terminus of the rat brain Na(+)-Ca(2+) exchanger (RBE-1; NCX1. 4) (amino acids 875-903) is modeled to contain the last transmembrane alpha helix (amino acids 875-894) and an intracellular extramembraneous tail of 9 amino acids (895-903). Truncation of the last 9 C-terminal amino acids, Glu-895 to stop, did not significantly impair functional expression in HeLa or HEK 293 cells. Truncation, however, of 10 amino acids (Leu-894 to stop; mutant C10) reduced Na(+) gradient-dependent Ca(2+) uptake to 35-39% relative to the wild type parent exchanger, and further truncation of 13 or more amino acids resulted in expression of trace amounts of transport activity. Western analysis indicated that Na(+)-Ca(2+) exchanger protein was produced whether transfection was carried out with functional or non-functional mutants. Immunofluorescence studies of HEK 293 cells expressing N-Flag epitope-tagged wild type and mutant Na(+)-Ca(2+) exchangers revealed that transport activity in whole cells correlated with surface expression. All cells expressing the wild type exchanger or C9 exhibited surface expression of the protein. Only 39% of the cells expressing C10 exhibited surface expression, and none was detected in cells transfected with non-functional mutants C13 and C29. Since functional and non-functional mutants were glycosylated, the C terminus is not mandatory to translocation into the endoplasmic reticulum (ER). Endoglycosidase H digestion of [(35)S]methionine-labeled protein derived from wild type Na(+)-Ca(2+) exchanger and from C10 indicated that resistance to the digestion was acquired after 1 and 5 h of chase, respectively. C29 did not acquire detectable resistance to endoglycosidase H digestion even after 10 h of chase. Taken together, these results suggest that the "cellular quality control machinery" can tolerate the structural change introduced by truncation of the C terminus up to Ser-893 albeit with reduced rate of ER-->Golgi transfer and reduced surface expression of the truncated protein. Further truncation of C-terminal amino acids leads to retention of the truncated protein in the ER, no transfer to the Golgi, and no surface expression.  相似文献   

11.
Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1 , the gene coding for the plasma membrane H +-ATPase, render misfolded proteins that are subjected to ERAD. A subset of misfolded PMA1 mutants exhibits a dominant negative effect on yeast growth since, when co-expressed with the wild type allele, both proteins are retained in the ER and degraded. We have used a PMA1 -D378T dominant lethal allele to analyse the mechanism underlying the retention of the wild type enzyme by the dominant negative mutant. A genetic screen was performed for isolation of intragenic suppressors of PMA1 -D378T allele. This analysis pointed to transmembrane helix 10 (TM10) as an important element in the establishment of the dominant lethality. Deletion of the TM10 was able to suppress not only the PMA1 -D378T but all the dominant lethal alleles tested. Biochemical analyses suggest that dominant lethal proteins obstruct, through TM10, the correct folding of the wild type enzyme leading to its retention and degradation by ERAD.  相似文献   

12.
Very long chain polyunsaturated fatty acid (VLC-PUFA)-containing glycerophospholipids are highly enriched in the retina; however, details regarding the specific synthesis and function of these highly unusual retinal glycerophospholipids are lacking. Elongation of very long chain fatty acids-4 (ELOVL4) has been identified as a fatty acid elongase protein involved in the synthesis of VLC-PUFAs. Mutations in ELOVL4 have also been implicated in an autosomal dominant form of Stargardt disease (STGD3), a type of juvenile macular degeneration. We have generated photoreceptor-specific conditional knock-out mice and used high performance liquid chromatography-mass spectrometry (HPLC-MS) to examine and analyze the fatty acid composition of retinal membrane glycerophosphatidylcholine and glycerophosphatidylethanolamine species. We also used immunofluorescent staining and histology coupled with electrophysiological data to assess retinal morphology and visual response. The conditional knock-out mice showed a significant decrease in retinal glycerophospholipids containing VLC-PUFAs, specifically contained in the sn-1 position of glycerophosphatidylcholine, implicating the role of Elovl4 in their synthesis. Conditional knock-out mice were also found to have abnormal accumulation of lipid droplets and lipofuscin-like granules while demonstrating photoreceptor-specific abnormalities in visual response, indicating the critical role of Elovl4 for proper rod or cone photoreceptor function. Altogether, this study demonstrates the essential role of ELOVL4 in VLC-PUFA synthesis and retinal function.  相似文献   

13.
14.
Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.  相似文献   

15.
Mutations in the proprotein convertase PCSK9 gene are associated with autosomal dominant familial hyper- or hypocholesterolemia. These phenotypes are caused by a gain or loss of function of proprotein convertase subtilisin kexin 9 (PCSK9) to elicit the degradation of the low-density lipoprotein receptor (LDLR) protein. Herein, we asked whether the subcellular localization of wild-type PCSK9 or mutants of PCSK9 and the LDLR would provide insight into the mechanism of PCSK9-dependent LDLR degradation. We show that the LDLR is the dominant partner in regulating the cellular trafficking of PCSK9. In cells lacking the LDLR, PCSK9 localized in the endoplasmic reticulum (ER). In cells expressing the LDLR, PCSK9 sorted to post-ER compartments (i.e. endosomes in cell lines and Golgi apparatus in primary hepatocytes), where it colocalized with the LDLR. In cell lines, PCSK9 also colocalized with the LDLR at the cell surface, requiring the presence of the C-terminal Cys/His-rich domain of PCSK9. We provide evidence that PCSK9 promotes the degradation of the LDLR by an endocytic mechanism, as small interfering RNA-mediated knockdown of the clathrin heavy chain reduced the functional activity of PCSK9. We also compared the subcellular localization of natural mutants of PCSK9 with that of the wild-type enzyme in human hepatic (HuH7) cells. Whereas the mutants associated with hypercholesterolemia (S127R, F216L and R218S) localized to endosomes/lysosomes, those associated with hypocholesterolemia did not reach this compartment. We conclude that the sorting of PCSK9 to the cell surface and endosomes is required for PCSK9 to fully promote LDLR degradation and that retention in the ER prevents this activity. Mutations that affect this transport can lead to hyper- or hypocholesterolemia.  相似文献   

16.
17.
Autosomal dominant retinitis pigmentosa (ADRP) has been linked to mutations in the gene encoding rhodopsin. Most RP-linked rhodopsin mutants are unable to fold correctly in the endoplasmic reticulum, are degraded by the ubiquitin proteasome system, and are highly prone to forming detergent-insoluble high molecular weight aggregates. Here we have reported that coexpression of folding-deficient, but not folding-proficient, ADRP-linked rhodopsin mutants impairs delivery of the wild-type protein to the plasma membrane. Fluorescence resonance energy transfer and co-precipitation studies revealed that mutant and wild-type rhodopsins form a high molecular weight, detergent-insoluble complex in which the two proteins are in close (<70 A) proximity. Co-expression of ARDP-linked rhodopsin folding-deficient mutants resulted in enhanced proteasome-mediated degradation and steady-state ubiquitination of the wild-type protein. These data suggested a dominant negative effect on conformational maturation that may underlie the dominant inheritance of ARDP.  相似文献   

18.
Stargardt disease (STGD) is the most common hereditary macular dystrophy and is characterized by decreased central vision, atrophy of the macula and underlying retinal-pigment epithelium, and frequent presence of prominent flecks in the posterior pole of the retina. STGD is most commonly inherited as an autosomal recessive trait, but many families have been described in which features of the disease are transmitted in an autosomal dominant manner. A recessive locus has been identified on chromosome 1p (STGD1), and dominant loci have been mapped to both chromosome 13q (STGD2) and chromosome 6q (STGD3). In this study, we describe a kindred with an autosomal dominant Stargardt-like phenotype. A genomewide search demonstrated linkage to a locus on chromosome 4p, with a maximum LOD score of 5.12 at a recombination fraction of.00, for marker D4S403. Analysis of extended haplotypes localized the disease gene to an approximately 12-cM interval between loci D4S1582 and D4S2397. Therefore, this kindred establishes a new dominant Stargardt-like locus, STGD4.  相似文献   

19.
Dominant negative PMA1 mutants render misfolded proteins that are retained in the endoplasmic reticulum (ER) and slowly degraded by ER-associated degradation. Accumulation of misfolded proteins in the ER activates an ER-to-nucleus signalling pathway termed the unfolded protein response (UPR). We have used a PMA1-D378T dominant negative mutant to analyse its impact on UPR induction. Our results show that overexpression of the misfolded mutant Pma1 does not lead to activation of the UPR. In addition, in mutants with a constitutively activated UPR the turnover rate of the mutant ATPase is not altered. To determine if the expression of the misfolded mutant protein induces some other kind of response we performed global gene expression analysis experiments in yeasts overexpressing either wild type or dominant lethal PMA1 alleles. The results suggest that the high osmolarity glycerol (Hog1) mitogen-activated protein kinase (MAPK) pathway is activated by both wild type and mutant ATPases. We show that expression of the PMA1 alleles induces phosphorylation of Hog1 and activation of the Hog1 MAPK cascade. This activation is mediated by the Sln1 branch of the stress-dependent Hog1 MAPK network. Finally, we show that at least two other plasma membrane proteins are also able to activate the Hog1 MAPK system.  相似文献   

20.
The Kv4.2 transient voltage-dependent potassium current contributes to the morphology of the cardiac action potential as well as to neuronal excitability and firing frequency. Here we report profound effects of the Kv4.2 C terminus on the surface expression and activation gating properties of Kv4.2 that are modulated by the direct interaction between KChIP2, an auxiliary regulatory subunit, and the C terminus of Kv4.2. We show that increasingly large truncations of the C terminus of rat Kv4.2 (wild type) cause a progressive decrease of Kv4.2 current along with a shift in voltage-dependent activation that is closely correlated with negative charge deletion. Co-expression of more limited Kv4.2 C-terminal truncation mutants (T588 and T528) with KChIP2 results in a doubling of Kv4.2 protein expression and up to an 8-fold increase in Kv4.2 current amplitude. Pulsechase experiments show that co-expression with KChIP2 slows Kv4.2 wild type degradation 8-fold. Co-expression of KChIP2 with an intermediate-length C-terminal truncation mutant (T474) shifts Kv4.2 activation voltage dependence and enhances expression of Kv4.2 current. The largest truncation mutants (T417 and DeltaC) show an intracellular localization with no measurable currents and no response to KChIP2 co-expression. Co-immunoprecipitation and competitive glutathione S-transferase-binding assays indicate a direct interaction between KChIP2 and the Kv4.2 C terminus with a relative binding affinity comparable with that of the N terminus. Overall, these results suggest that the C-terminal domain of Kv4.2 plays a critical role in voltage-dependent activation and functional expression that is mediated by direct interaction between the Kv4.2 C terminus and KChIP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号