首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested a hypothesis that a long-term administration of antidepressants acting through different primary biochemical mechanisms is associated with changes in the platelet serotonin (5-hydroxytryptamine, 5-HT) transport. Laboratory rats were administered norepinephrine reuptake inhibitors (desipramine, maprotiline), selective 5-HT reuptake inhibitor (citalopram), reversible monoamine oxidase inhibitor (moclobemide), and lithium (inositol monophosphatase inhibitor among others) during a 4-week period. Apparent kinetic parameters of platelet 5-HT transport were analyzed. Significant decrease in apparent Michaelis constant (K(M)) was found after the administration of all tested antidepressants except for desipramine. There was certain increase in maximal velocity (V(max)) values following the administration of desipramine, maprotiline, and citalopram; however, the all V(max) changes were not significant. V(max)/K(M) ratio representing limiting permeability at low extracellular concentrations of 5-HT was systematically increased in all the tested drugs, but significant changes were occurred only in maprotiline- and citalopram-treated rats. Adaptive changes in platelet 5-HT transport induced by citalopram were opposite to the acute inhibitory effect of this drug on 5-HT transporter activity. An increase in limiting membrane permeability for 5-HT could be included in the common adaptive effect of the long-term administration of antidepressants that differ in pharmacologic selectivity.  相似文献   

2.
OBJECTIVE: Monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters, has an important role in the brain development and function, and MAO inhibitors have a range of potential therapeutic uses. We investigated systematically in vitro effects of pharmacologically different antidepressants and mood stabilizers on MAO activity. Methods: Effects of drugs on the activity of MAO were measured in crude mitochondrial fraction isolated from cortex of pig brain, when radiolabeled serotonin (for MAO-A) or phenylethylamine (for MAO-B) was used as substrate. The several antidepressants and mood stabilizers were compared with effects of well known MAO inhibitors such as moclobemide, iproniazid, pargyline, and clorgyline. Results: In general, the effect of tested drugs was found to be inhibitory. The half maximal inhibitory concentration, parameters of enzyme kinetic, and mechanism of inhibition were determined. MAO-A was inhibited by the following drugs: pargyline > clorgyline > iproniazid > fluoxetine > desipramine > amitriptyline > imipramine > citalopram > venlafaxine > reboxetine > olanzapine > mirtazapine > tianeptine > moclobemide, cocaine > lithium, valproate. MAO-B was inhibited by the following drugs: pargyline > clorgyline > iproniazid > fluoxetine > venlafaxine > amitriptyline > olanzapine > citalopram > desipramine > reboxetine > imipramine > tianeptine > mirtazapine, cocaine > moclobemide, lithium, valproate. The mechanism of inhibition of MAOs by several antidepressants was found various. Conclusions: It was concluded that MAO activity is acutely affected by pharmacologically different antidepressants at relatively high drug concentrations; this effect is inhibitory. There are differences both in inhibitory potency and in mechanism of inhibition between both several drugs and the two MAO isoforms. While MAO inhibition is not primary biochemical effect related to their therapeutic action, it can be supposed that decrease of MAO activity may be concerned in some effects of these drugs on serotonergic, noradrenergic, and dopaminergic neurotransmission.  相似文献   

3.
Membrane damage is one of the main reasons for reduced motility and fertility of sperm cells during cryopreservation. Using a model system of sperm cryopreservation developed in our laboratory, we have investigated the detailed changes due to cryopreservation in the plasma membrane lipid composition of the goat epididymal sperm cells. Total lipid and its components, i.e., neutral lipids, glycolipids and phospholipids decreased significantly after cryopreservation. Among neutral lipids sterols, steryl esters and 1-O-alkyl-2,3-diacyl glycerols decreased appreciably, while among phospholipids, major loss was observed for phosphatidyl choline and phosphatidyl ethanolamine. Unsaturated fatty acids bound to the phospholipids diminished while the percentage of saturated acids increased. The cholesterol:phospholipid ratio enhanced and the amount of hydrocarbon, which was unusually high, increased further on cryopreservation. The data indicates that profound increase of the hydrophobicity of the cell membrane is one of the major mechanisms by which spermatozoa acquire potential to resist or combat stress factors like cryodamage. The results are compatible with the view that for survival against cryodamage, sperm cells modulate the structure of their outer membrane by shedding off preferentially some hydrophilic lipid constituents of the cell membrane.  相似文献   

4.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

5.
M F Sugrue 《Life sciences》1980,26(6):423-429
Changes in rat brain monoamine turnover were studied following the chronic administration of five agents which markedly differ in their patterns of monoamine uptake inhibition. Compounds (10 mg/kg, i.p.) were injected once daily for 14 days and experiments undertaken 24 h after the last injection. Chronic administration of desipramine or mianserin elevated brain MOPEG-SO4 content and the α-MT-induced reduction in brain NA levels was enhanced by chronic desipramine. either antidepressant altered turnover of brain DA or 5-HT. Steady state levels of brain 5-HIAA or striatal levels of DOPAC or HVA were also unchanged. Chronically administered Org 6582, a selective inhibitor of 5-HT uptake, decreased basal and attenuated the probenecid-induced increase iin brain 5-HIAA levels. Chronic Org 6582 had no effect on NA or DA turnover and on the levels of MOPEG-SO4, DOPAC or HVA. Neither maprotiline nor chlorimipramine altered turnover of NA, DA or 5-HT or levels of metabolites. Thus, in contrast to the acute situation, chronically administered desipramine increases rat brain NA turnover. Conversely, acute and chronic Org 6582 administration yield similar findings, viz. a decrease in turnover. These observations suggest that rat brain 5-HT systems are more resistant than NA systems to adaptive changes following a prolonged inhibition of monoamine uptake.  相似文献   

6.
The aim of this work was to assess the relative contributions of lipid peroxidation and cholesterol content to the increase in membrane rigidity observed during senescence. Membrane fluidity was manipulated through exposure to peroxidized or cholesterol-loaded liposomes. Small unilamella liposomes were prepared and either peroxidized by Fe++-ADP-ascorbic acid or loaded with cholesterol. After incorporation of the liposomes into rat liver microsomal membranes, membrane fluidity was quantitated by measuring changes in polarization. Membranes exhibited a greater sensitivity to peroxidation than cholesterol in that incorporation of peroxidized liposomes induced microsomal membrane rigidity substantially more than did cholesterol-loaded liposomes. Thus it is proposed, based on data from the present and earlier studies, that membrane fluidity can be modulated readily by lipid peroxidation of membrane phospholipids, irrespective of the influences of cholesterol. These results support the proposal that alterations of lipid structure are more potent and effective than compositional changes in cholesterol in inducing age-related increases in membrane rigidity.  相似文献   

7.
Therapeutic drug monitoring necessitates efficient, fast and reliable analytical methods validated by external quality control. We therefore devised an isocratic reversed-phase HPLC method with ultraviolet detection and optimised this to quantify mirtazapine, reboxetine, moclobemide, venlafaxine, O-desmethylvenlafaxine, paroxetine, fluvoxamine, fluoxetine, norfluoxetine, sertraline, citalopram, amitriptyline, nortriptyline, imipramine, desipramine, doxepin, nordoxepin, clomipramine, norclomipramine, trimipramine, mianserine, maprotiline, normaprotiline, amisulpride, clozapine, norclozapine, quetiapine, risperidone and 9-OH-risperidone in human serum. After solid-phase extraction of the drugs and metabolites, the chromatographic separation was achieved on a Nucleosil 100-Protect 1 column with acetonitrile-potassium dihydrogenphosphate buffer as mobile phase. The method was validated for therapeutic and toxic serum ranges. A linear relationship (r>0.998) was obtained between the concentration and the detector signal. Recoveries were between 75 and 99% for the drugs and metabolites. The accuracy of the quality control samples, expressed as percent recovery, ranged from 91 to 118%; intra- and inter-assay-relative standard deviations were 0.9-10.2% and 0.9-9.7%, respectively. Additional external quality control is carried out since 3 years. This method is applicable to rapidly and effectively analyze serum or plasma samples for therapeutic drug monitoring of about 30 antidepressants and atypical antipsychotics.  相似文献   

8.
A study was made of the lipid content of liver and thymus chromatin of intact and gamma-irradiated (10 Gy) rats 10 and 40 min after irradiation. The composition of the chromatin-bound phospholipids was shown to differ from that of phospholipids of intact nuclei and a nuclear membrane by a much larger content of cardiolipin and sphingomyelin. A decrease in the lipid phosphorus level, increase in the amount of total cholesterol, and a 1.7-fold increase in the cholesterol/phospholipids ratio were observed after irradiation: 40 min after exposure these indices were normalized. The opposite changes were noted in the lipid content of the thymus chromatin: 10 min after irradiation no changes were detected while after 40 min more than a 1.5-fold increase in the cholesterol amount and the cholesterol/phospholipids ratio was registered. The content of cardiolipin was reliably decreased in the chromatin of both organs throughout the entire period of observation.  相似文献   

9.
Membrane lipids—phospholipids, fatty acids, and cholesterol—participate in thermal adaptation of ectotherms (bacteria, amphibians, reptiles, fishes) mainly via changes in membrane viscosity caused by the degree of fatty acids unsaturation, cholesterol/phospholipids ratio, and phospholipid composition. Studies of thermal adaptation of endotherms (mammals and birds) revealed the regulatory role of lipids in hibernation. Cholesterol and fatty acids participate in regulation of the parameters of torpor, gene expression, and activity of enzymes of lipid metabolism. Some changes in lipid metabolism during artificial and natural hypobiosis, namely, increased concentration of cholesterol and fatty acids in blood and decreased cholesterol concentration in neocortex, are analogous to those observed under stress conditions and coincide with mammalian nonspecific reactions to environmental agents. It is shown that the effects of artificial and natural hypobiosis on lipid composition of mammalian cell membranes are different. Changes in lipid composition cause changes in membrane morphology during mammalian hibernation. The effect of hypobiosis on lipid composition of membranes and cell organelles is specific and seems to be defined by the role of lipids in signaling systems. Comparative study of lipid metabolism in membranes and organelles during natural and artificial hypobiosis is promising for elucidation of adaptation of mammals to low ambient temperatures.  相似文献   

10.
A substantial number of patients do not respond sufficiently to antidepressant drugs and are therefore often co-medicated with lithium as an augmentation strategy. Also inhibitors of nitric oxide synthase (NOS) have been used as an augmentation strategy, while inhibitors of NOS exhibit antidepressant-like properties in various animal models. Therefore, we hypothesized that modulation of NOS may be involved in the long-term effects of antidepressants and lithium, and studied the influence of acute and chronic administration of citalopram, alone or in combination with lithium, on NOS activity in hippocampus, cerebellum, and frontal cortex, by determination of L-citrulline being formed. We found that administration of acute or chronic citalopram (5 mg/kg and 20 mg/kg/24h, respectively) alone or in combination with subchronic lithium (60 mmol/kg chow pellet) did not influence the activity of NOS ex vivo in all regions compared to control. In contrast, high doses of lithium caused a significant decrease in NOS activity in vitro. We conclude that basal conditions are unsuitable for the study of antidepressant effects on NOS, and that the neurochemistry of nitric oxide remains unaltered following chronic citalopram or subchronic lithium under normal physiological conditions.  相似文献   

11.
Maintaining proper membrane phase and fluidity is important for preserving membrane structure and function, and by altering membrane lipid composition many organisms can adapt to changing environmental conditions. We compared the phospholipid and cholesterol composition of liver and brain plasma membranes in the freeze-tolerant wood frog, Rana sylvatica, from southern Ohio and Interior Alaska during summer, fall, and winter. We also compared membranes from winter-acclimatized frogs from Ohio that were either acclimated to 0, 4, or 10 °C, or frozen to ?2.5 °C and sampled before or after thawing. Lipids were extracted from isolated membranes, separated by one-dimensional thin-layer chromatography, and analyzed via densitometry. Liver membranes underwent seasonal changes in phospholipid composition and lipid ratios, including a winter increase in phosphatidylethanolamine, which serves to increase fluidity. However, whereas Ohioan frogs decreased phosphatidylcholine and increased sphingomyelin, Alaskan frogs only decreased phosphatidylserine, indicating that these phenotypes use different adaptive strategies to meet the functional needs of their membranes. Liver membranes showed no seasonal variation in cholesterol abundance, though membranes from Alaskan frogs contained relatively less cholesterol, consistent with the need for greater fluidity in a colder environment. No lipid changed seasonally in brain membranes in either population. In the thermal acclimation experiment, cold exposure induced an increase in phosphatidylethanolamine in liver membranes and a decrease in cholesterol in brain membranes. No changes occurred during freezing and thawing in membranes from either organ. Wood frogs use tissue-specific membrane adaptation of phospholipids and cholesterol to respond to changing environmental factors, particularly temperature, though not with freezing.  相似文献   

12.
Oxidative damage to vascular cell membrane phospholipids causes physicochemical changes in membrane structure and lipid organization, contributing to atherogenesis. Oxidative stress combined with hyperglycemia has been shown to further increase the risk of vascular and metabolic diseases. In this study, the effects of glucose on oxidative stress-induced cholesterol domain formation were tested in model membranes containing polyunsaturated fatty acids and physiologic levels of cholesterol. Membrane structural changes, including cholesterol domain formation, were characterized by small angle X-ray scattering (SAXS) analysis and correlated with spectrophotometrically-determined lipid hydroperoxide levels. Glucose treatment resulted in a concentration-dependent increase in lipid hydroperoxide formation, which correlated with the formation of highly-ordered cholesterol crystalline domains (unit cell periodicity of 34 Å) as well as a decrease in overall membrane bilayer width. The effect of glucose on lipid peroxidation was further enhanced by increased levels of cholesterol. Treatment with free radical-scavenging agents inhibited the biochemical and structural effects of glucose, even at elevated cholesterol levels. These data demonstrate that glucose promotes changes in membrane organization, including cholesterol crystal formation, through lipid peroxidation.  相似文献   

13.
Effect of desipramine on dopamine receptor binding in vivo   总被引:2,自引:0,他引:2  
T Suhara  O Inoue  K Kobayasi 《Life sciences》1990,47(23):2119-2126
Effect of desipramine (given i.p. 30 min prior to the tracer injection) on the in vivo binding of 3H-SCH23390 and 3H-N-methylspiperone (3H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of 3H-SCH23390 or 45 min after injection of 3H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.  相似文献   

14.
Changes in brain lipid composition have been determined in 24 months-old Fischer rats with respect to 6 months-old ones. The cerebral levels of sphingomyelin and cholesterol were found to be significantly increased in aged rats, whereas the amount of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid appear to be unaffected by aging. Long-term feeding with acetyl-L-carnitine was able to reduce the age-dependent increase of both sphingomyelin and cholesterol cerebral levels with no effect on the other measured phospholipids. These findings shown that changes in membrane lipid metabolism and/or composition represent one of the alterations occurring in rat brain with aging, and that long-term feeding with acetyl-L-carnitine can be useful in normalizing these age-dependent disturbances.  相似文献   

15.
The specific binding of [125I] hCG to ovarian membrane preparations as well as membrane fluidity have been investigated in immature rats during hormonally-induced pseudopregnancy. Membrane fluidity was monitored either by fluorescence polarization analysis of 1,6-diphenyl-1,3,5-hexatriene or by electron spin resonance of 16-, 12-, 5-doxyl stearic acid and CAT 16. A significant positive correlation was found between membrane lipid rigidity and the number of LH/hCG receptors. Luteinization of the ovary induced mobility of molecules in the hydrophobic membrane part at about the C16 carbon level. The changes in rigidity of membrane lipid were the apparent result of alterations in the cholesterol to phospholipids ratio. The results suggest that the increased rigidity of membrane lipid during pseudopregnancy may maximally expose ovarian LH/hCG receptors maintained in a cryptic form.  相似文献   

16.
Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.  相似文献   

17.
Reported herein is a method that can be used to study the role of cholesterol in the microclustering of a ubiquitous class of membrane receptors, termed integrins. Integrin microclustering was measured using a fluorescence resonance energy transfer assay that does not require direct attachment of fluorescent donors or acceptors onto the integrins, and thus minimizes unwanted perturbations to integrin clustering. Membrane cholesterol levels were reduced using methyl-β-cyclodextrin (mβCD), as confirmed by Amplex Red assays of total cellular lipid or plasma membrane lipid extract. Subsequent changes in integrin microclustering were measured in cells expressing wild-type (WT) or mutant integrins. Although less integrin microclustering was measured after 27% membrane cholesterol depletion in a cell line expressing WT integrins, there was no statistically significant change for cells expressing α-cytoplasmic integrin mutants after a 45% reduction in plasma membrane cholesterol, and a significant increase in clustering for cells expressing ligand-binding domain integrin mutants after a 57% decrease in membrane cholesterol. These results are explained by differences in WT and mutant integrin partitioning into lipid nanodomains. Restoration of original cholesterol levels was used to confirm that the measured changes in membrane properties were cholesterol-dependent. No correlations between lipid diffusion and integrin microclustering were measured by means of fluorescence recovery after photobleaching using a fluorescent lipid mimetic. Similar lipid diffusion coefficients were measured after cholesterol depletion, irrespective of the integrins being expressed.  相似文献   

18.
Participation of electrostatic and other noncovalent interactions in the binding of tricyclic antidepressants (TCAs) to the lipid bilayers was estimated from pH-dependencies of imipramine, desipramine, amitriptyline and nortriptyline binding to the lipid bilayers prepared from different phospholipids, both electroneutral and acidic. The binding was studied using a radioligand binding assay. It was found that the membrane phospholipid composition and methylation of the acyl side chain of TCA has a decisive effect on participation of particular noncovalent interactions in the binding. Apparent high-affinity binding of TCAs to the phosphatidylcholine or phosphatidylethanolamine membranes are achieved mainly by incorporation of uncharged drug molecules into the hydrophobic core of the bilayers. Van der Waals forces and hydrophobic effect are responsible for this binding. Both charged and uncharged drug molecules bind to phosphatidylserine membranes, therefore coulomb- or ion-induced dipole interactions play a role in these binding. Different spatial distribution of charged residues within the interface causes different electrostatic interactions between charged TCAs and vesicles formed from phosphatidylserine and phosphatidylinositol. The data supports the hypothesis under which TCAs could have effect on affective disorders partially via binding to the lipid part of the membrane and following changes of lipid-protein interactions.  相似文献   

19.
The hydrophilic beta-adrenoceptor ligand (-)-[3H]CGP-12177 binds to intact C6 cells with a high affinity (KD approximately 0.1 nM) and with a high degree of specificity. The binding was inhibited by DL-propranolol (Ki approximately 1 nM). Treatment of cells cultured in Dulbecco's modified Eagle medium (DMEM) without fetal calf serum for 4 days with desipramine reduced the (-)-[3H]CGP-12177 specific binding in a concentration-dependent manner, a reduction from 127 to 102 fmol/mg of protein being found at a ligand concentration of 1 nM after treatment with 10 microM desipramine. Lesser effects were seen after treatment for 1 day. A similar result was found with maprotiline, and reductions in specific binding were seen after 4 days of treatment with amitriptyline, iprindole, and citalopram. The reduction in binding-site density (measured per milligram of protein to compensate for variability in cell density per well), however, was paralleled in all cases by a reduction in the rate of cell proliferation. When C6 glioma cells were cultured in Ham's medium without fetal calf serum during the antidepressant treatment period, a higher specific binding was observed than for the DMEM-cultured cells, and 10 microM desipramine was without effect on either the (-)-[3H]CGP-12177 specific binding or cell proliferation. It is concluded that the effects of the antidepressants tested upon the density of (-)-[3H]CGP-12177 specific binding sites in intact C6 cells may be secondary to the toxicity of the compounds under the conditions used.  相似文献   

20.
There are many studies of the mechanisms of antidepressants; however, most of these studies were conducted on the hippocampus or frontal cortex. In the present study, we hypothesized that the nucleus accumbens and caudate/putamen might be major targets for antidepressant effects. Thus, we focused on G(olf) protein, a stimulant alpha-subunit of G protein that is coupled with the dopamine D1 receptor and specifically expressed in the striatum (nucleus accumbens, caudate/putamen and olfactory tubercle) in the rat brain. We examined the effects of chronic administration of imipramine, fluvoxamine, maprotiline and, as a negative control, cocaine on the level of G(olf) protein in the rat striatum. We also examined the effect of olfactory bulbectomy. Chronic imipramine treatment (10 mg/kg for 2 or 4 weeks) significantly increased the level of G(olf) in the striatum (by 17% or 18%, respectively), although this increase was not apparent after only 1 week of treatment. The time course of these changes corresponded well to that of the clinical efficacy of imipramine. Chronic fluvoxamine and maprotiline treatment (20 mg/kg for 2 weeks) also significantly increased the level of G(olf) (by 9% and 25%, respectively), but cocaine did not alter it significantly. Bulbectomy decreased the G(olf) protein level by 9%. The increases in G(olf) protein after chronic administration of these three different classes of antidepressants and the decrease after bulbectomy suggest that G(olf) protein may play an important role in the antidepressant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号