首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presenilin (PS) is essential for the gamma-cleavage required for the generation of the C terminus of amyloid beta-protein (Abeta). However, the mechanism underlying PS-mediated gamma-cleavage remains unclear. We have identified Herp cDNA by our newly developed screening method for the isolation of cDNAs that increase the degree of gamma-cleavage. Herp was originally identified as a homocysteine-responsive protein, and its expression is up-regulated by endoplasmic reticulum stress. Herp is an endoplasmic reticulum-localized membrane protein that has a ubiquitin-like domain. Here, we report that a high expression of Herp in cells increases the level of Abeta generation, although not in PS-deficient cells. We found that Herp interacts with both PS1 and PS2. Thus, Herp regulates PS-mediated Abeta generation, possibly through its binding to PS. Immunohistochemical analysis of a normal human brain section with an anti-Herp antibody revealed the exclusive staining of neurons and vascular smooth muscle cells. Moreover, the antibody strongly stained activated microglia in senile plaques in the brain of patients with Alzheimer disease. Taken together, Herp could be involved in Abeta accumulation, including the formation of senile plaques and vascular Abeta deposits.  相似文献   

2.
Bone marrow stromal cells (MSCs) have the capability of differentiating into mesenchymal and non-mesenchymal lineages. In this study, MSCs isolated from adult Sprague-Dawley rats were cultured to proliferation, followed by in vitro induction under specific conditions. The results demonstrated that MSCs were transdifferentiated into cells with the Schwann cell (SC) phenotypes according to their morphology and immunoreactivities to SC surface markers including S-100, glial fibrillary acidic protein (GFAP) and low-affinity nerve growth factor receptor (p75). Consequently, rat adult MSCs can be induced in vitro to differentiate into SC-like cells, thus developing an abundant and accessible SC reservoir to meet the requirements of constructing tissue engineered nerve grafts for peripheral nerve repair.  相似文献   

3.
Hyperhomocysteinemia, a risk factor for vascular disease, injures endothelial cells through undefined mechanisms. We previously identified several homocysteine-responsive genes in cultured human vascular endothelial cells, including the endoplasmic reticulum (ER)-resident molecular chaperone GRP78/BiP. Here, we demonstrate that homocysteine induces the ER stress response and leads to the expression of a novel protein, Herp, containing a ubiquitin-like domain at the N terminus. mRNA expression of Herp was strongly up-regulated by inducers of ER stress, including mercaptoethanol, tunicamycin, A23187, and thapsigargin. The ER stress-dependent induction of Herp was also observed at the protein level. Immunochemical analyses using Herp-specific antibodies indicated that Herp is a 54-kDa, membrane-associated ER protein. Herp is the first integral membrane protein regulated by the ER stress response pathway. Both the N and C termini face the cytoplasmic side of the ER; this membrane topology makes it unlikely that Herp acts as a molecular chaperone for proteins in the ER, in contrast to GRP78 and other ER stress-responsive proteins. Herp may, therefore, play an unknown role in the cellular survival response to stress.  相似文献   

4.
Electrophysiology of mammalian Schwann cells   总被引:5,自引:0,他引:5  
Schwann cells are the satellite cell of the peripheral nervous system, and they surround axons and motor nerve terminals. The review summarises evidence for the ion channels expressed by mammalian Schwann cells, their molecular nature and known or speculated functions. In addition, the recent evidence for gap junctions and cytoplasmic diffusion pathways within the myelin and the functional consequences of a lower-resistance myelin sheath are discussed.

The main types of ion channel expressed by Schwann cells are K+ channels, Cl channels, Na+ channels and Ca2+ channels. Each is represented by a variety of sub-types. The molecular and biophysical characteristics of the cation channels expressed by Schwann cells are closely similar or identical to those of channels expressed in peripheral axons and elsewhere. In addition, Schwann cells express P2X ligand-gated ion channels. Possible in vivo roles for each ion channel type are discussed. Ion channel expression in culture could have a special function in driving or controlling cell proliferation and recent evidence indicates that some Ca2+ channel and Kir channel expression in culture is dependent upon the presence of neurones and local electrical activity.  相似文献   


5.
6.
One of the most striking features of neurons in the mature peripheral nervous system is their ability to survive and to regenerate their axons following axonal injury. To perform a comprehensive survey of the molecular mechanisms that underlie peripheral nerve regeneration, we analyzed a cDNA library derived from the distal stumps of post-injured sciatic nerve which was enriched in non-myelinating Schwann cells using cDNA microarrays. The number of up- and down-regulated genes in the transected sciatic nerve was 370 and 157, respectively, of the 9596 spotted genes. In the up-regulated group, the number of known genes was 216 and the number of expressed sequence tag (EST) sequences was 154. In the down-regulated group, the number of known genes was 103 and that of EST sequences was 54. We obtained several genes that were previously reported to be involved in regeneration of the injured neurons, such as cathepsin D, ninjurin 1, tenascin C, and co-receptor for glial cell line-derived neurotrophic factor family of trophic factors. In addition to unknown genes, there seemed to be a lot of annotated genes whose role in nerve regeneration remains unknown.  相似文献   

7.
A study has been made of the formation of synaptic terminals from long processes formed at the end of motor nerve branches of endplates in mature amphibian (Bufo marinus) muscle. Injection of fluorescent dyes into individual motor axons showed the full extent of their branches at single endplates. Synaptic vesicle clusters at these branches were identified with styryl dyes. Some terminal branches consisted of well separated varicosities, each possessing a cluster of functioning synaptic vesicles whilst others formed by the same axon consisted of closely spaced clusters of vesicles in a branch of approximately uniform diameter. All the varicosities gave rise to calcium transients on stimulation of their parent axon. Both types of branches sometimes possessed short processes (<5 μm long) or very long thin processes (>10 μm long) which ended in a bulb that possessed a functional synaptic vesicle cluster. These thin processes could move and form a varicosity along their length in less than 30 min. Injection of a fluorescent dye into terminal Schwann cells (TSCs) at an endplate showed that they also possessed very long thin processes (>10 μm long) which could move over relatively short times (<30 min). Injecting fluorescent dyes into both axons and their associated TSCs showed that on some occasions long TSC processes were accompanied by a long nerve terminal process and at other times they were not. It is suggested that the mature motor-nerve terminal is a dynamic structure in which the formation of processes by TSCs guides nerve terminal sprouting.  相似文献   

8.
目的探讨脱细胞神经移植物诱导大鼠骨髓间充质干细胞分化为施旺细胞样细胞的可行性。方法将分离纯化的SD大鼠骨髓间充质干细胞进行体外培养扩增,行表型鉴定后,取第5代细胞,诱导组采用脱细胞神经移植物匀浆进行诱导,非诱导组加入等量无血清培养基,倒置相差显微镜观察诱导后细胞形态变化,免疫细胞化学染色检测诱导后细胞S-100,神经胶质纤维酸性蛋白(glial fibrillary acidic protein GFAP)的表达情况。结果BMSCs表型鉴定为CD44+、CD54+、CD34-,免疫细胞化学染色GFAP、S-100的阳性表达率分别为为(42±4)%和(64±5)%。结果 脱细胞神经移植物可诱导骨髓间充质干细胞分化为施旺细胞样细胞。  相似文献   

9.
Herp is an endoplasmic reticulum (ER)-stress-inducible membrane protein, which has a ubiquitin-like domain (ULD). However, its biological function is as yet unknown. Previously, we reported that a high expression level of Herp in cells increases the generation of amyloid beta-protein (Abeta) and that Herp interacts with presenilin (PS). Here, we addressed the role of the ULD of Herp in Abeta generation and intracellular Herp stability. We found that the ULD is not essential for the enhancement of Abeta generation by Herp expression and the interaction of Herp with PS, but is involved in the rapid degradation of Herp, most likely via the ubiquitin/proteasome pathway. Thus, the ULD of Herp most likely plays a role in the regulation of the intracellular level of Herp under ER stress.  相似文献   

10.

Background

Motor neuron degeneration in SOD1G93A transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers.

Methodology/Principal Findings

Hindlimb muscles were transplanted between wild-type and SOD1G93A transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 months. The results showed that muscles from SOD1G93A mice did not induce motor terminal degeneration in wildtype mice and that muscles from wildtype mice did not prevent degeneration in SOD1G93A transgenic mice. Control studies demonstrated that muscles transplanted from SOD1G93A mice continued to express mutant SOD1 protein. Experiments on wildtype mice established that the host supplied terminal Schwann cells (TSCs) at the NMJs of transplanted muscles.

Conclusions/Significance

These results indicate that expression of the mutant protein in muscle is not needed to cause motor terminal degeneration in SOD1G93A transgenic mice and that a combination of motor terminals, motor axons and Schwann cells, all of which express mutant protein may be sufficient.  相似文献   

11.
Mesenchymal stem cells (MSCs) are multipotent, can be easily expanded in culture and hence are an attractive therapeutic tool for cardiac repair. MSCs have tremendous potential to transdifferentiate to cardiac lineage both in vitro and in vivo. The present study examined the differentiation capacity of conditioned media derived from ischemic cardiac tissue on human MSCs. Human Bone marrow-derived MSCs after due characterization by immunocytochemistry and flow cytometry for MSC specific markers were induced by culture media derived from ischemic (n = 13) and non-ischemic (n = 18) human cardiac tissue. Parallel cultures were treated with 5-azacytidine (5-azaC), a potent cardiomyogen. MSCs induced with ischemic conditioned media formed myotube like structures, expressed sarcomeric Troponin I, alpha myosin heavy chain proteins and were positive for cardiac specific markers (Nkx2.5, human atrial natriuretic peptide, myosin light chain-2a, GATA-4) as was observed in 5-azaC treated cells. However, uninduced MSCs as well as those induced with non-ischemic cardiac conditioned media still maintained the fibroblast morphology even after 3 weeks post-induction. Transmission electron microscopic studies of cardiomyocyte-like cells derived from MSCs revealed presence of sarcomeric bands but failed to show gap junctions and intercalated discs as of adult cardiomyocytes. These findings demonstrate that ischemic cardiac conditioned media induces morphological and molecular changes in MSCs with cardiac features, but at a primitive stage. Proteomics analysis of the ischemic conditioned media revealed differential expression of three relevant proteins (C-type lectin superfamily member 13, Testis-specific chromodomain protein Y2 and ADP/ATP translocase 1), whose exact role in cardiac regeneration needs further analysis.  相似文献   

12.
Crustacean muscles are innervated by phasic and tonic motor neurons that display differential physiology and have morphologically distinct synaptic terminals. Phasic motor neurons release much more transmitter per impulse and have filiform terminals, whereas tonic motor neurons release less transmitter and have larger terminals with prominent varicosities. Using an antibody raised against Drosophila frequenin (frq), a calcium-binding protein that enhances transmitter release in Drosophila synaptic terminals, we found that frq-like immunoreactivity is prominent in many of the phasic, but not tonic nerve endings of crayfish motor neurons. In contrast, synapsin- and dynamin-like immunoreactivities are strongly expressed in both types of terminal. The immunocytochemical findings strongly suggested the presence of an frq-like molecule in crayfish, and its differential expression indicated a possible modulatory role in transmitter release. Therefore, we cloned the cDNA sequences for the crayfish and lobster homologues of Drosophila frq. Crustacean frequenins are very similar in sequence to their Drosophila counterpart, and calcium-binding regions (EF hands) are conserved. The widespread occurrence of frq-like molecules and their differential localization in crayfish motor neurons indicate a significant role in physiology or development of these neurons.  相似文献   

13.
In this study, we examined the expression of mRNAs for Regenerating gene (Reg)/pancreatitis-associated protein (PAP) family members following hypoglossal nerve injury in rats. In addition to four rat family members (RegI, Reg-2/PAP I, PAP II, and PAP III) that had been identified, we newly cloned and sequenced a type-IV Reg gene in rats. Among these five family members, the expression of Reg-2/PAP I mRNA was predominantly enhanced in injured motor neurons after axotomy. Furthermore, a marked induction of PAP III mRNA was observed in the distal part of the injured nerve. A polyclonal antibody was raised against PAP III, and a Western blotting analysis using this antibody confirmed an increased level of PAP III protein in the injured nerve. These results suggest that Reg family members would be new mediators among injured neurons and glial cells, and may play pivotal roles during nerve regeneration.  相似文献   

14.
15.
The mature peripheral nervous system has the ability to survive and to regenerate its axons following axonal injury. After nerve injury, the distal axonal and myelin segment undergoes dissolution and absorption by the surrounding cellular environment, a process called Wallerian degeneration. Using cDNA microarrays, we isolated FLRT3 as one of the up-regulated genes expressed in the distal segment of the sciatic nerve 7 days after transection relative to those of the intact sciatic nerve. FLRT3 is a putative type I transmembrane protein containing 10 leucine-rich repeats, a fibronectin type III domain, and an intracellular tail. The neurons plated on CHO cells expressing FLRT3 extended significantly longer neurites than those plated on wild-type CHO cells, demonstrating that FLRT3 promotes neurite outgrowth. FLRT3 mRNA was especially abundant in the basal ganglia, the granular layer of cerebellum, and the hippocampus, except the CA1 region in the adult rat brain. Thus, FLRT3 may contribute to regeneration following axonal injury.  相似文献   

16.
应用酵母双杂交技术筛选Herp的相互作用蛋白。构建编码Herp的基因HERPUD1真核表达载体HERPUD1plexA,应用MATCHMAKERLexA酵母双杂交系统筛选人胎脑cDNA文库,获得的阳性克隆的插入子为Herp的候选相互作用蛋白质,将Herp与筛选到的相互作用蛋白再一对一回复进行酵母双杂交实验,去除假阳性。对阳性克隆插入子的DNA序列测序,在GenBank中作匹配及生物信息学分析。结果得到其中1个阳性克隆的插入子序列与TEGT基因序列一致,编码蛋白为Baxinhibitor1。得出结论:Herp与Baxinhibitor1相互作用,Baxinhibitor1具有调节凋亡特性,提示Herp可能参与凋亡调节。  相似文献   

17.
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington’s disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.  相似文献   

18.
Summary Somatomedin C (Sm-C; insulin-like growth factor I; IGF-I) is a polypeptide (Mr 7649), often dependent on growth hormone (GH), with trophic effects on several different tissues. Monospecific IGF-I antisera were used to investigate its localization in the sciatic nerve and corresponding nerve cells, as well as its possible axoplasmic transport in the adult rat. IGF-I-like immunoreactivity was demonstrated in anterior horn motor nerve cells in the spinal cord and in spinal- and autonomic ganglion nerve cells. Faint IGF-I immunoreactivity was under normal conditions observed in axons of the sciatic nerve and in the Schwann cells. Using crush technique, accumulation of IGF-I immunoreactivity was seen in dilated axons within 2 h, both proximal and distal to the crush. However, only a small fraction of the anterogradely transported IGF-I immunoreactive material could be demonstrated to be transported in retrograde direction. Colchicine injected proximal to a crush prevented accumulation of IGF-I immunoreactivity proximal to the crush, but not distal to it.IGF-I-immunoreactive material is synthesized in the cell bodies of peripheral sensory and motor nerve cells. It is transported at rapid rates in the axoplasm of the sciatic nerve of adult rats both in anterograde and retrograde directions. We propose that axonally transported IGF-I may be released and exert trophic influence on innervated cells, tissues and organs.  相似文献   

19.
Marrow stromal cells (MSCs) have the ability to provide growth factors and differentiate into neural-like cells on treating with EGF, bFGF and other factors. We wanted to explore whether growth factors secreted by MSCs itself could induce self-differentiation into neural-like cells. Here, we show that even in the absence of inducing factors, rMSCs spontaneously differentiate into neural-like cells expressing neural markers, such as nestin, beta-tubulin III, Doublecortin (DCX), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE). Furthermore, some cells become neurosphere-like growing in suspension. Compared with control and neural-like rMSCs induced by epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we found using real-time PCR that self-differentiating rMSCs (SDrMSCs) expressed significantly higher levels of neurotrophic high-affinity receptors (TrkA and TrkB). Coincident with neural marker expression, nerve growth factor (NGF) mRNA was significantly higher than controls despite lower protein levels in the supernatant. Our study suggests that rMSCs have the potential to differentiate into neural cells spontaneously in culture and may contribute towards the natural function of MSCs for neural system in vivo.  相似文献   

20.
Notch and bone morphogenetic protein signaling pathways are important for cellular differentiation, and both have been implicated in vascular development. In many cases the two pathways act similarly, but antagonistic effects have also been reported. The underlying mechanisms and whether this is caused by an interplay between Notch and BMP signaling is unknown. Here we report that expression of the Notch target gene, Herp2, is synergistically induced upon activation of Notch and BMP receptor signaling pathways in endothelial cells. The synergy is mediated via RBP-Jkappa/CBF-1 and GC-rich palindromic sites in the Herp2 promoter, as well as via interactions between the Notch intracellular domain and Smad that are stabilized by p/CAF. Activated Notch and its downstream effector Herp2 were found to inhibit endothelial cell (EC) migration. In contrast, BMP via upregulation of Id1 expression has been reported to promote EC migration. Interestingly, Herp2 was found to antagonize BMP receptor/Id1-induced migration by inhibiting Id1 expression. Our results support the notion that Herp2 functions as a critical switch downstream of Notch and BMP receptor signaling pathways in ECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号